Problems and Solutions: CRMO-2012, Paper 1

1. Let *ABC* be a triangle and *D* be a point on the segment *BC* such that DC = 2BD. Let *E* be the mid-point of *AC*. Let *AD* and *BE* intersect in *P*. Determine the ratios *BP*/*PE* and *AP*/*PD*.

Solution: Let *F* be the midpoint of *DC*, so that *D*, *F* are points of trisection of *BC*. Now in triangle *CAD*, *F* is the mid-point of *CD* and *E* is that of *CA*. Hence CF/FD = 1 = CE/EA. Thus $EF \parallel AD$. Hence we find that $EF \parallel PD$. Hence BP/PE = BD/DF. But BD = DF. We obtain BP/PE = 1.

In triangle *ACD*, since $EF \parallel AD$ we get EF/AD = CF/CD = 1/2. Thus AD = 2EF. But PD/EF = BD/BF = 1/2. Hence EF = 2PD. Therefore This gives

$$AP = AD - PD = 3PD.$$

We obtain AP/PD = 3.

(Coordinate geometry proof is also possible.)

2. Let a, b, c be positive integers such that a divides b^3 , b divides c^3 and c divides a^3 . Prove that abc divides $(a + b + c)^{13}$.

Solution: If a prime p divides a, then $p | b^3$ and hence p | b. This implies that $p | c^3$ and hence p | c. Thus every prime dividing a also divides b and c. By symmetry, this is true for b and c as well. We conclude that a, b, c have the same set of prime divisors.

Let $p^x || a, p^y || b$ and $p^z || c$. (Here we write $p^x || a$ to mean $p^x || a$ and $p^{x+1} |/a$.) We may assume min $\{x, y, z\} = x$. Now $b | c^3$ implies that $y \le 3z$; $c | a^3$ implies that $z \le 3x$. We obtain

$$y \leq 3z \leq 9x$$
.

Thus $x + y + z \le x + 3x + 9x = 13x$. Hence the maximum power of p that divides abc is $x + y + z \le 13x$. Since x is the minimum among x, y, z, whence p^x divides each of a, b, c. Hence p^x divides a + b + c. This implies that p^{13x} divides $(a + b + c)^{13}$. Since $x + y + z \le 13x$, it follows that p^{x+y+z} divides $(a + b + c)^{13}$. This is true of any prime p dividing a, b, c. Hence abc divides $(a + b + c)^{13}$.

3. Let *a* and *b* be positive real numbers such that a + b = 1. Prove that

$$a^a b^b + a^b b^a \le 1.$$

Solution: Observe

$$1 = a + b = a^{a+b}b^{a+b} = a^a b^b + b^a b^b.$$

Hence

$$1 - a^{a}b^{b} - a^{b}b^{a} = a^{a}b^{b} + b^{a}b^{b} - a^{a}b^{b} - a^{b}b^{a} = (a^{a} - b^{a})(a^{b} - b^{b})$$

Now if $a \le b$, then $a^a \le b^a$ and $a^b \le b^b$. If $a \ge b$, then $a^a \ge b^a$ and $a^b \ge b^b$. Hence the product is nonnegative for all positive *a* and *b*. It follows that

Downloaded From :http://cbseportal^{abb} + a^{bb} ≤ 1 .

Courtesy : Olympiad

4. Let $X = \{1, 2, 3, ..., 10\}$. Find the number of pairs $\{A, B\}$ such that $A \subseteq X$, $B \subseteq X$, $A \neq B$ and $A \cap B = \{2, 3, 5, 7\}$.

Solution: Let $A \cup B = Y$, $B \setminus A = M$, $A \setminus B = N$ and $X \setminus Y = L$. Then *X* is the disjoint union of *M*, *N*, *L* and $A \cap B$. Now $A \cap B = \{2, 3, 5, 7\}$ is fixed. The remaining six elements 1, 4, 6, 8, 9, 10 can be distributed in any of the remaining sets *M*, *N*, *L*. This can be done in 3^6 ways. Of these if all the elements are in the set *L*, then $A = B = \{2, 3, 5, 7\}$ and which this case has to be deleted. Hence the total number of pairs $\{A, B\}$ such that $A \subseteq X$, $B \subseteq X$, $A \neq B$ and $A \cap B = \{2, 3, 5, 7\}$ is $3^6 - 1$.

5. Let *ABC* be a triangle. Let *BE* and *CF* be internal angle bisectors of $\angle B$ and $\angle C$ respectively with *E* on *AC* and *F* on *AB*. Suppose *X* is a point on the segment *CF* such that $AX \perp CF$; and *Y* is a point on the segment *BE* such that $AY \perp BE$. Prove that XY = (b + c - a)/2 where BC = a, CA = b and AB = c.

Solution: Produce AX and AY to meet BC is X' and Y' respectively. Since BY bisects $\angle ABY'$ and $BY \perp AY'$ it follows that BA = BY' and AY = YY'. Similarly, CA = CX' and AX = XX'. Thus X and Y are mid-points of AX' and AY' respectively. By mid-point theorem XY = X'Y'/2. But

$$X'Y' = X'C + Y'B - BC = AC + AB - BC = b + c - a$$

Hence XY = (b + c - a)/2.

6. Let *a* and *b* be real numbers such that $a \neq 0$. Prove that not all the roots of $ax^4 + bx^3 + x^2 + x + 1 = 0$ can be real.

Solution: Let α_1 , α_2 , α_3 , α_4 be the roots of $ax^4 + bx^3 + x^2 + x + 1 = 0$. Observe none of these is zero since their product is 1/a. Then the roots of $x^4 + x^3 + x^2 + bx + a = 0$ are

$$\beta_1 = \frac{1}{\alpha_1}, \beta_2 = \frac{1}{\alpha_2}, \beta_3 = \frac{1}{\alpha_3}, \beta_4 = \frac{1}{\alpha_4}$$

We have

$$\sum_{j=1}^{4} \beta_j = -1, \quad \sum 1 \le j < k \le 4\beta_j \beta_k = 1.$$

Hence

$$\sum_{j=1}^{4} \beta_j^2 = \left(\sum_{j=1}^{4} \beta_j\right)^2 - 2\left(\sum_{1 \le j < k \le 4} \beta_j \beta_k\right) = 1 - 2 = -1.$$

This shows that not all β_i can be real. Hence not all α_i 's can be real.

Courtesy : Olympiad