Problems and Solutions: CRMO-2012, Paper 1

1. Let $A B C$ be a triangle and D be a point on the segment $B C$ such that $D C=2 B D$. Let E be the mid-point of $A C$. Let $A D$ and $B E$ intersect in P. Determine the ratios $B P / P E$ and $A P / P D$.

Solution: Let F be the midpoint of $D C$, so that D, F are points of trisection of $B C$. Now in triangle $C A D, F$ is the mid-point of $C D$ and E is that of $C A$. Hence $C F / F D=$ $1=C E / E A$. Thus $E F \| A D$. Hence we find that $E F \| P D$. Hence $B P / P E=B D / D F$. But $B D=D F$. We obtain $B P / P E=1$.

In triangle $A C D$, since $E F \| A D$ we get $E F / A D=C F / C D=1 / 2$. Thus $A D=2 E F$. But $P D / E F=B D / B F=1 / 2$. Hence $E F=2 P D$. Therefore
This gives

$$
A P=A D-P D=3 P D .
$$

We obtain $A P / P D=3$.
(Coordinate geometry proof is also possible.)
2. Let a, b, c be positive integers such that a divides b^{3}, b divides c^{3} and c divides a^{3}. Prove that $a b c$ divides $(a+b+c)^{13}$.
Solution: If a prime p divides a, then $p \mid b^{3}$ and hence $p \mid b$. This implies that $p \mid c^{3}$ and hence $p \mid c$. Thus every prime dividing a also divides b and c. By symmetry, this is true for b and c as well. We conclude that a, b, c have the same set of prime divisors.
Let $p^{x}\left\|a, p^{y}\right\| b$ and $p^{z} \| c$. (Here we write $p^{x} \| a$ to mean $p^{x} \mid a$ and $p^{x+1} \vee a$.) We may assume $\min \{x, y, z\}=x$. Now $b \mid c^{3}$ implies that $y \leq 3 z ; c \mid a^{3}$ implies that $z \leq 3 x$. We obtain

$$
y \leq 3 z \leq 9 x
$$

Thus $x+y+z \leq x+3 x+9 x=13 x$. Hence the maximum power of p that divides $a b c$ is $x+y+z \leq 13 x$. Since x is the minimum among x, y, z, whence p^{x} divides each of a, b, c. Hence p^{x} divides $a+b+c$. This implies that $p^{13 x}$ divides $(a+b+c)^{13}$. Since $x+y+z \leq 13 x$, it follows that p^{x+y+z} divides $(a+b+c)^{13}$. This is true of any prime p dividing a, b, c. Hence $a b c$ divides $(a+b+c)^{13}$.
3. Let a and b be positive real numbers such that $a+b=1$. Prove that

$$
a^{a} b^{b}+a^{b} b^{a} \leq 1
$$

Solution: Observe

$$
1=a+b=a^{a+b} b^{a+b}=a^{a} b^{b}+b^{a} b^{b} .
$$

Hence

$$
1-a^{a} b^{b}-a^{b} b^{a}=a^{a} b^{b}+b^{a} b^{b}-a^{a} b^{b}-a^{b} b^{a}=\left(a^{a}-b^{a}\right)\left(a^{b}-b^{b}\right)
$$

Now if $a \leq b$, then $a^{a} \leq b^{a}$ and $a^{b} \leq b^{b}$. If $a \geq b$, then $a^{a} \geq b^{a}$ and $a^{b} \geq b^{b}$. Hence the product is nonnegative for all positive a and b. It follows that
4. Let $X=\{1,2,3, \ldots, 10\}$. Find the the number of pairs $\{A, B\}$ such that $A \subseteq X$, $B \subseteq X, A \neq B$ and $A \cap B=\{2,3,5,7\}$.

Solution: Let $A \cup B=Y, B \backslash A=M, A \backslash B=N$ and $X \backslash Y=L$. Then X is the disjoint union of M, N, L and $A \cap B$. Now $A \cap B=\{2,3,5,7\}$ is fixed. The remaining six elements $1,4,6,8,9,10$ can be distributed in any of the remaining sets M, N, L. This can be done in 3^{6} ways. Of these if all the elements are in the set L, then $A=B=\{2,3,5,7\}$ and which this case has to be deleted. Hence the total number of pairs $\{A, B\}$ such that $A \subseteq X, B \subseteq X, A \neq B$ and $A \cap B=\{2,3,5,7\}$ is $3^{6}-1$.
5. Let $A B C$ be a triangle. Let $B E$ and $C F$ be internal angle bisectors of $\angle B$ and $\angle C$ respectively with E on $A C$ and F on $A B$. Suppose X is a point on the segment $C F$ such that $A X \perp C F$; and Y is a point on the segment $B E$ such that $A Y \perp B E$. Prove that $X Y=(b+c-a) / 2$ where $B C=a, C A=b$ and $A B=c$.

Solution: Produce $A X$ and $A Y$ to meet $B C$ is X^{\prime} and Y^{\prime} respectively. Since $B Y$ bisects $\angle A B Y^{\prime}$ and $B Y \perp A Y^{\prime}$ it follows that $B A=B Y^{\prime}$ and $A Y=Y Y^{\prime}$. Similarly, $C A=C X^{\prime}$ and $A X=X X^{\prime}$. Thus X and Y are mid-points of $A X^{\prime}$ and $A Y^{\prime}$ respectively. By mid-point theorem $X Y=X^{\prime} Y^{\prime} / 2$. But

$$
X^{\prime} Y^{\prime}=X^{\prime} C+Y^{\prime} B-B C=A C+A B-B C=b+c-a .
$$

Hence $X Y=(b+c-a) / 2$.
6. Let a and b be real numbers such that $a \neq 0$. Prove that not all the roots of $a x^{4}+$ $b x^{3}+x^{2}+x+1=0$ can be real.

Solution: Let $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$ be the roots of $a x^{4}+b x^{3}+x^{2}+x+1=0$. Observe none of these is zero since their product is $1 / a$. Then the roots of $x^{4}+x^{3}+x^{2}+b x+a=0$ are

$$
\beta_{1}=\frac{1}{\alpha_{1}}, \beta_{2}=\frac{1}{\alpha_{2}}, \beta_{3}=\frac{1}{\alpha_{3}}, \beta_{4}=\frac{1}{\alpha_{4}} .
$$

We have

$$
\sum_{j=1}^{4} \beta_{j}=-1, \quad \sum 1 \leq j<k \leq 4 \beta_{j} \beta_{k}=1
$$

Hence

$$
\sum_{j=1}^{4} \beta_{j}^{2}=\left(\sum_{j=1}^{4} \beta_{j}\right)^{2}-2\left(\sum_{1 \leq j<k \leq 4} \beta_{j} \beta_{k}\right)=1-2=-1
$$

This shows that not all β_{j} can be real. Hence not all α_{j} 's can be real.

