Problems and Solutions: CRMO-2012, Paper 3

1. Let $A B C D$ be a unit square. Draw a quadrant of a circle with A as centre and B, D as end points of the arc. Similarly, draw a quadrant of a circle with B as centre and A, C as end points of the arc. Inscribe a circle Γ touching the arcs $A C$ and $B D$ both externally and also touching the side $C D$. Find the radius of the circle Γ.

Solution: Let O be the centre of Γ. By symmetry O is on the perpendicular bisector of $C D$. Draw $O L \perp C D$ and $O K \perp B C$. Then $O K=C L=C D / 2=1 / 2$. If r is the radius of Γ, we see that $B K=1-r$, and $O E=r$. Using Pythagoras' theorem

$$
(1+r)^{2}=(1-r)^{2}+\left(\frac{1}{2}\right)^{2} .
$$

Simplification gives $r=1 / 16$.
2. Let a, b, c be positive integers such that a divides b^{5}, b divides c^{5} and c divides a^{5}. Prove that $a b c$ divides $(a+b+c)^{31}$.
Solution: If a prime p divides a, then $p \mid b^{5}$ and hence $p \mid b$. This implies that $p \mid c^{4}$ and hence $p \mid c$. Thus every prime dividing a also divides b and c. By symmetry, this is true for b and c as well. We conclude that a, b, c have the same set of prime divisors.
Let $p^{x}\left\|a, p^{y}\right\| b$ and $p^{z} \| c$. (Here we write $p^{x} \| a$ to mean $p^{x} \mid a$ and $p^{x+1} \vee a$.) We may assume $\min \{x, y, z\}=x$. Now $b \mid c^{5}$ implies that $y \leq 5 z ; c \mid a^{5}$ implies that $z \leq 5 x$. We obtain

$$
y \leq 5 z \leq 25 x
$$

Thus $x+y+z \leq x+5 x+25 x=31 x$. Hence the maximum power of p that divides $a b c$ is $x+y+z \leq 31 x$. Since x is the minimum among x, y, z, p^{x} divides a, b, c. Hence p^{x} divides $a+b+c$. This implies that $p^{31 x}$ divides $(a+b+c)^{21}$. Since $x+y+z \leq 31 x$, it follows that p^{x+y+z} divides $(a+b+c)^{31}$. This is true of any prime p dividing a, b, c. Hence $a b c$ divides $(a+b+c)^{31}$.
3. Let a and b be positive real numbers such that $a+b=1$. Prove that

$$
a^{a} b^{b}+a^{b} b^{a} \leq 1
$$

Solution: Observe

$$
1=a+b=a^{a+b} b^{a+b}=a^{a} b^{b}+b^{a} b^{b}
$$

Hence

$$
1-a^{a} b^{b}-a^{b} b^{a}=a^{a} b^{b}+b^{a} b^{b}-a^{a} b^{b}-a^{b} b^{a}=\left(a^{a}-b^{a}\right)\left(a^{b}-b^{b}\right)
$$

Now if $a \leq b$, then $a^{a} \leq b^{a}$ and $a^{b} \leq b^{b}$. If $a \geq b$, then $a^{a} \geq b^{a}$ and $a^{b} \geq b^{b}$. Hence the product is nonnegative for all poitive a and b. It follows that

$$
a^{a} b^{b}+a^{b} b^{a} \leq 1 .
$$

4. Let $X=\{1,2,3, \ldots, 10\}$. Find the the number of pairs $\{A, B\}$ such that $A \subseteq X$, $B \subseteq X, A \neq B$ and $A \cap B=\{5,7,8\}$.

Solution: Let $A \cup B=Y, B \backslash A=M, A \backslash B=N$ and $X \backslash Y=L$. Then X is the disjoint union of M, N, L and $A \cap B$. Now $A \cap B=\{5,7,8\}$ is fixed. The remaining
N, L. This can be done in 3^{7} ways. Of these if all the elements are in the set L, then $A=B=\{5,7,8\}$ and this case has to be omitted. Hence the total number of pairs $\{A, B\}$ such that $A \subseteq X, B \subseteq X, A \neq B$ and $A \cap B=\{5,7,8\}$ is $3^{7}-1$.
5. Let $A B C$ be a triangle. Let D, E be a points on the segment $B C$ such that $B D=$ $D E=E C$. Let F be the mid-point of $A C$. Let $B F$ intersect $A D$ in P and $A E$ in Q respectively. Determine the ratio of the area of the triangle $A P Q$ to that of the quadrilateral $P D E Q$.

Solution: If we can find $[A P Q] /[A D E]$, then we can get the required ratio as

$$
\begin{aligned}
& \frac{[A P Q]}{[P D E Q]}=\frac{[A P Q]}{[A D E]-[A P Q]} \\
&=\frac{1}{([A D E] /[A P Q])-1}
\end{aligned}
$$

Now draw $P M \perp A E$ and $D L \perp A E$. Observe

$$
[A P Q]=\frac{1}{2} A Q \cdot P M,[A D E]=\frac{1}{2} A E \cdot D L .
$$

Further, since $P M \| D L$, we also get $P M / D L=A P / A D$. Using these we obtain

$$
\frac{[A P Q]}{[A D E]}=\frac{A P}{A D} \cdot \frac{A Q}{A E} .
$$

We have

$$
\frac{A Q}{Q E}=\frac{[A B Q]}{[E B Q]}=\frac{[A C Q]}{[E C Q]}=\frac{[A B Q]+[A C Q]}{[B C Q]}=\frac{[A B Q]}{[B C Q]}+\frac{[A C Q]}{[B C Q]}=\frac{A F}{F C}+\frac{A S}{S B} .
$$

However

$$
\frac{B S}{S A}=\frac{[B Q C]}{[A Q C]}=\frac{[B Q C] /[A Q B]}{[A Q C] /[A Q B]}=\frac{C F / F A}{E C / B E}=\frac{1}{1 / 2}=2 .
$$

Besides $A F / F C=1$. We obtain

$$
\frac{A Q}{Q E}=\frac{A F}{F C}+\frac{A S}{S B}=1+\frac{1}{2}=\frac{3}{2}, \quad \frac{A E}{Q E}=1+\frac{3}{2}=\frac{5}{2}, \quad \frac{A Q}{A E}=\frac{3}{5} .
$$

Since $E F \| A D$ (since $D E / E C=A F / F C=1$), we get $A D=2 E F$. Since $E F \| P D$, we also have $P D / E F=B D / D E=1 / 2$. Hence $E F=2 P D$. Thus $A D=4 P D$. This gives and $A P / P D=3$ and $A P / A D=3 / 4$. Thus

$$
\frac{[A P Q]}{[A D E]}=\frac{A P}{A D} \cdot \frac{A Q}{A E}=\frac{3}{4} \cdot \frac{3}{5}=\frac{9}{20} .
$$

Finally,

$$
\frac{[A P Q]}{[P D E Q]}=\frac{1}{([A D E] /[A P Q])-1}=\frac{1}{(20 / 9)-1}=\frac{9}{11}
$$

(Note: $B S / S A$ can also be obtained using Ceva's theorem. Coordinate geometry solution can also be obtained.)
6. Find all positive integers n such that $3^{2 n}+3 n^{2}+7$ is a perfect square.

Solution: If $3^{2 n}+3 n^{2}+7=b^{2}$ for some natural number b, then $b^{2}>3^{2 n}$ so that

$$
3^{2 n}+3 n^{2}+7=b^{2} \geq\left(3^{n}+1\right)^{2}=3^{2 n}+2 \cdot 3^{n}+1
$$

This shows that $2 \cdot 3^{n} \leq 3 n^{2}+6$. If $n \geq 3$, this cannot hold. One can prove this eithe by induction or by direct argument:
If $n \geq 3$, then

$$
\begin{aligned}
2 \cdot 3^{n}=2(1+2)^{n}=2\left(1+2 n+(n(n-1) / 2) \cdot 2^{2}\right. & +\cdots)>2+4 n+4 n^{2}-4 n \\
& =3 n^{2}+\left(n^{2}+2\right) \geq 3 n^{2}+11>3 n^{2}+6
\end{aligned}
$$

Hence $n=1$ or 2 .
If $n=1$, then $3^{2 n}+3 n^{2}+7=19$ and this is not a perfect square. If $n=2$, we obtain $3^{2 n}+3 n^{2}+7=81+12+7=100=10^{2}$. Hence $n=2$ is the only solution.

