Problems and Solutions: CRMO-2012, Paper 3

1. Let ABCD be a unit square. Draw a quadrant of a circle with A as centre and B,D as end points of the arc. Similarly, draw a quadrant of a circle with B as centre and A,C as end points of the arc. Inscribe a circle Γ touching the arcs AC and BD both externally and also touching the side CD. Find the radius of the circle Γ .

Solution: Let O be the centre of Γ . By symmetry O is on the perpendicular bisector of CD. Draw $OL \perp CD$ and $OK \perp BC$. Then OK = CL = CD/2 = 1/2. If r is the radius of Γ , we see that BK = 1 - r, and OE = r. Using Pythagoras' theorem

Simplification gives
$$r = 1/16$$
.

- Simplification gives r = 1/16.
- 2. Let a,b,c be positive integers such that a divides b^5 , b divides c^5 and c divides a^5 . Prove that abc divides $(a+b+c)^{31}$.

Solution: If a prime p divides a, then $p \mid b^5$ and hence $p \mid b$. This implies that $p \mid c^4$ and hence $p \mid c$. Thus every prime dividing a also divides b and c. By symmetry, this is true for b and c as well. We conclude that a, b, c have the same set of prime divisors.

Let $p^x \mid\mid a$, $p^y \mid\mid b$ and $p^z \mid\mid c$. (Here we write $p^x \mid\mid a$ to mean $p^x \mid a$ and $p^{x+1} \mid\mid a$.) We may assume $\min\{x,y,z\} = x$. Now $b \mid c^5$ implies that $y \leq 5z$; $c \mid a^5$ implies that $z \leq 5x$. We obtain

$$y \leq 5z \leq 25x$$
.

Thus $x+y+z \le x+5x+25x=31x$. Hence the maximum power of p that divides abc is $x+y+z \le 31x$. Since x is the minimum among x,y,z, p^x divides a,b,c. Hence p^x divides a+b+c. This implies that p^{31x} divides $(a+b+c)^{21}$. Since $x+y+z \le 31x$, it follows that p^{x+y+z} divides $(a+b+c)^{31}$. This is true of any prime p dividing a,b,c. Hence abc divides $(a+b+c)^{31}$.

3. Let a and b be positive real numbers such that a + b = 1. Prove that

$$a^a b^b + a^b b^a < 1.$$

Solution: Observe

$$1 = a + b = a^{a+b}b^{a+b} = a^ab^b + b^ab^b.$$

Hence

$$1 - a^{a}b^{b} - a^{b}b^{a} = a^{a}b^{b} + b^{a}b^{b} - a^{a}b^{b} - a^{b}b^{a} = (a^{a} - b^{a})(a^{b} - b^{b})$$

Now if $a \le b$, then $a^a \le b^a$ and $a^b \le b^b$. If $a \ge b$, then $a^a \ge b^a$ and $a^b \ge b^b$. Hence the product is nonnegative for all pointive a and b. It follows that

$$a^a b^b + a^b b^a \le 1.$$

4. Let $X = \{1, 2, 3, ..., 10\}$. Find the number of pairs $\{A, B\}$ such that $A \subseteq X$, $B \subseteq X$, $A \neq B$ and $A \cap B = \{5, 7, 8\}$.

Solution: Let $A \cup B = Y$, $B \setminus A = M$, $A \setminus B = N$ and $X \setminus Y = L$. Then X is the disjoint union of M, N, L and $A \cap B$. Now $A \cap B = \{5,7,8\}$ is fixed. The remaining

N, L. This can be done in 3^7 ways. Of these if all the elements are in the set L, then $A=B=\{5,7,8\}$ and this case has to be omitted. Hence the total number of pairs $\{A,B\}$ such that $A\subseteq X$, $B\subseteq X$, $A\neq B$ and $A\cap B=\{5,7,8\}$ is 3^7-1 .

5. Let ABC be a triangle. Let D, E be a points on the segment BC such that BD = DE = EC. Let F be the mid-point of AC. Let BF intersect AD in P and AE in Q respectively. Determine the ratio of the area of the triangle APQ to that of the quadrilateral PDEQ.

Solution: If we can find [APQ]/[ADE], then we can get the required ratio as

$$\begin{split} \frac{[APQ]}{[PDEQ]} &= \frac{[APQ]}{[ADE] - [APQ]} \\ &= \frac{1}{\left([ADE]/[APQ]\right) - 1}. \end{split}$$

Now draw $PM \perp AE$ and $DL \perp AE$. Observe

$$[APQ] = \frac{1}{2}AQ \cdot PM$$
, $[ADE] = \frac{1}{2}AE \cdot DL$.

Further, since $PM \parallel DL$, we also get PM/DL = AP/AD. Using these we obtain

$$\frac{[APQ]}{[ADE]} = \frac{AP}{AD} \cdot \frac{AQ}{AE}.$$

We have

$$\frac{AQ}{QE} = \frac{[ABQ]}{[EBQ]} = \frac{[ACQ]}{[ECQ]} = \frac{[ABQ] + [ACQ]}{[BCQ]} = \frac{[ABQ]}{[BCQ]} + \frac{[ACQ]}{[BCQ]} = \frac{AF}{FC} + \frac{AS}{SB}.$$

However

$$\frac{BS}{SA} = \frac{[BQC]}{[AQC]} = \frac{[BQC]/[AQB]}{[AQC]/[AQB]} = \frac{CF/FA}{EC/BE} = \frac{1}{1/2} = 2.$$

Besides AF/FC = 1. We obtain

$$\frac{AQ}{QE} = \frac{AF}{FC} + \frac{AS}{SB} = 1 + \frac{1}{2} = \frac{3}{2}, \quad \frac{AE}{QE} = 1 + \frac{3}{2} = \frac{5}{2}, \quad \frac{AQ}{AE} = \frac{3}{5}.$$

Since $EF \parallel AD$ (since DE/EC = AF/FC = 1), we get AD = 2EF. Since $EF \parallel PD$, we also have PD/EF = BD/DE = 1/2. Hence EF = 2PD. Thus AD = 4PD. This gives and AP/PD = 3 and AP/AD = 3/4. Thus

$$\frac{[APQ]}{[ADE]} = \frac{AP}{AD} \cdot \frac{AQ}{AE} = \frac{3}{4} \cdot \frac{3}{5} = \frac{9}{20}.$$

Finally,

$$\frac{[APQ]}{[PDEQ]} = \frac{1}{\left([ADE]/[APQ]\right) - 1} = \frac{1}{(20/9) - 1} = \frac{9}{11}.$$

(Note: BS/SA can also be obtained using Ceva's theorem. Coordinate geometry solution can also be obtained.)

6. Find all positive integers n such that $3^{2n} + 3n^2 + 7$ is a perfect square.

Solution: If $3^{2n} + 3n^2 + 7 = b^2$ for some natural number b, then $b^2 > 3^{2n}$ so that Downloaded From its in the charge of the courtesy: Olympiad

Downloaded From : http://cbseportal.com/

$$3^{2n} + 3n^2 + 7 = b^2 \ge (3^n + 1)^2 = 3^{2n} + 2 \cdot 3^n + 1.$$

This shows that $2 \cdot 3^n \le 3n^2 + 6$. If $n \ge 3$, this cannot hold. One can prove this eithe by induction or by direct argument: If $n \ge 3$, then

$$2 \cdot 3^{n} = 2(1+2)^{n} = 2\left(1+2n+\left(n(n-1)/2\right)\cdot 2^{2}+\cdots\right) > 2+4n+4n^{2}-4n$$
$$= 3n^{2}+(n^{2}+2) > 3n^{2}+11 > 3n^{2}+6.$$

Hence n = 1 or 2.

If n = 1, then $3^{2n} + 3n^2 + 7 = 19$ and this is not a perfect square. If n = 2, we obtain $3^{2n} + 3n^2 + 7 = 81 + 12 + 7 = 100 = 10^2$. Hence n = 2 is the only solution.

Downloaded From :http://cbseportal.com/ Courtesy : Olympiad