Problems and Solutions: CRMO-2012, Paper 4

1. Let $A B C D$ be a unit square. Draw a quadrant of a circle with A as centre and B, D as end points of the arc. Similarly, draw a quadrant of a circle with B as centre and A, C as end points of the arc. Inscribe a circle Γ touching the arc $A C$ externally, the arc $B D$ internally and also touching the side $A D$. Find the radius of the circle Γ.

Solution: Let O be the centre of Γ and r its radius. Draw $O P \perp A D$ and $O Q \perp A B$. Then $O P=r, O Q^{2}=O A^{2}-r^{2}=(1-r)^{2}-$ $r^{2}=1-2 r$. We also have $O B=1+r$ and $B Q=1-r$. Using Pythagoras' theorem we get

$$
(1+r)^{2}=(1-r)^{2}+1-2 r .
$$

Simplification gives $r=1 / 6$.
2. Let a, b, c be positive integers such that a divides b^{2}, b divides c^{2} and c divides a^{2}. Prove that $a b c$ divides $(a+b+c)^{7}$.
Solution: If a prime p divides a, then $p \mid b^{2}$ and hence $p \mid b$. This implies that $p \mid c^{2}$ and hence $p \mid c$. Thus every prime dividing a also divides b and c. By symmetry, this is true for b and c as well. We conclude that a, b, c have the same set of prime divisors.
Let $p^{x}\left\|a, p^{y}\right\| b$ and $p^{z} \| c$. (Here we write $p^{x} \| a$ to mean $p^{x} \mid a$ and $p^{x+1} \vee a$.) We may assume $\min \{x, y, z\}=x$. Now $b \mid c^{2}$ implies that $y \leq 2 z ; c \mid a^{2}$ implies that $z \leq 2 x$. We obtain

$$
y \leq 2 z \leq 4 x
$$

Thus $x+y+z \leq x+2 x+4 x=7 x$. Hence the maximum power of p that divides $a b c$ is $x+y+z \leq 7 x$. Since x is the minimum among x, y, z, p^{x} divides a, b, c. Hence p^{x} divides $a+b+c$. This implies that $p^{7 x}$ divides $(a+b+c)^{7}$. Since $x+y+z \leq 7 x$, it follows that p^{x+y+z} divides $(a+b+c)^{7}$. This is true of any prime p dividing a, b, c. Hence $a b c$ divides $(a+b+c)^{7}$.
3. Let a and b be positive real numbers such that $a+b=1$. Prove that

$$
a^{a} b^{b}+a^{b} b^{a} \leq 1 .
$$

Solution: Observe

$$
1=a+b=a^{a+b} b^{a+b}=a^{a} b^{b}+b^{a} b^{b} .
$$

Hence

$$
1-a^{a} b^{b}-a^{b} b^{a}=a^{a} b^{b}+b^{a} b^{b}-a^{a} b^{b}-a^{b} b^{a}=\left(a^{a}-b^{a}\right)\left(a^{b}-b^{b}\right)
$$

Now if $a \leq b$, then $a^{a} \leq b^{a}$ and $a^{b} \leq b^{b}$. If $a \geq b$, then $a^{a} \geq b^{a}$ and $a^{b} \geq b^{b}$. Hence the product is nonnegative for all positive a and b. It follows that

$$
a^{a} b^{b}+a^{b} b^{a} \leq 1 .
$$

4. Let $X=\{1,2,3, \ldots, 11\}$. Find the the number of pairs $\{A, B\}$ such that $A \subseteq X$, $B \subseteq X, A \neq B$ and $A \cap B=\{4,5,7,8,9,10\}$.

Solution: Let $A \cup B=Y, B \backslash A=M, A \backslash B=N$ and $X \backslash Y=L$. Then X is the disjoint union of M, N, L and $A \cap B$. Now $A \cap B=\{4,5,7,8,9,10\}$ is fixed. The
N, L. This can be done in 3^{5} ways. Of these if all the elements are in the set L, then $A=B=\{4,5,7,8,9,10\}$ and this case has to be omitted. Hence the total number of pairs $\{A, B\}$ such that $A \subseteq X, B \subseteq X, A \neq B$ and $A \cap B=\{4,5,7,8,9,10\}$ is $3^{5}-1$.
5. Let $A B C$ be a triangle. Let E be a point on the segment $B C$ such that $B E=2 E C$. Let F be the mid-point of $A C$. Let $B F$ intersect $A E$ in Q. Determine $B Q / Q F$.

Solution: Let $C Q$ and $E T$ meet $A B$ in S
 and T respectively. We have

$$
\frac{[S B C]}{[A S C]}=\frac{B S}{S A}=\frac{[S B Q]}{[A S Q]}
$$

Using componendo by dividendo, we obtain

$$
\frac{B S}{S A}=\frac{[S B C]-[S B Q]}{[A S C]-[A S Q]}=\frac{[B Q C]}{[A Q C]} .
$$

Similarly, We can prove

$$
\frac{B E}{E C}=\frac{[B Q A]}{[C Q A]}, \quad \frac{C F}{F A}=\frac{[C Q B]}{[A Q B]} .
$$

But $B D=D E=E C$ implies that $B E / E C=2 ; C F=F A$ gives $C F / F A=1$. Thus

$$
\frac{B S}{S A}=\frac{[B Q C]}{[A Q C]}=\frac{[B Q C] /[A Q B]}{[A Q C] /[A Q B]}=\frac{C F / F A}{E C / B E}=\frac{1}{1 / 2}=2 .
$$

Now

$$
\frac{B Q}{Q F}=\frac{[B Q C]}{[F Q C]}=\frac{[B Q A]}{[F Q A]}=\frac{[B Q C]+[B Q A]}{[F Q C]+[F Q A]}=\frac{[B Q C]+[B Q A]}{[A Q C]} .
$$

This gives

$$
\frac{B Q}{Q F}=\frac{[B Q C]+[B Q A]}{[A Q C]}=\frac{[B Q C]}{[A Q C]}+\frac{[B Q A]}{[A Q C]}=\frac{B S}{S A}+\frac{B E}{E C}=2+2=4 .
$$

(Note: $B S / S A$ can also be obtained using Ceva's theorem. One can also obtain the result by coordinate geometry.)
6. Solve the system of equations for positive real numbers:

$$
\frac{1}{x y}=\frac{x}{z}+1, \quad \frac{1}{y z}=\frac{y}{x}+1, \quad \frac{1}{z x}=\frac{z}{y}+1 .
$$

Solution: The given system reduces to

$$
z=x^{2} y+x y z, x=y^{z}+x y z, y=z^{2} x+x y z .
$$

Hence

$$
z-x^{2} y=x-y^{2} z=y-z^{2} x .
$$

If $x=y$, then $y^{2} z=z^{2} x$ and hence $x^{2} z=z^{2} x$. This implies that $z=x=y$. Similarly, $x=z$ implies that $x=z=y$. Hence if any two of x, y, z are equal, then all are equal. Suppose no two of x, y, z are equal. We may take x is the largest among x, y, z so that $x>y$ and $x>z$. Here we have two possibilities: $y>z$ and $z>y$.
Suppose $x>y>z$. Now $z-x^{2} y=x-y^{2} z=y-z^{2} x$ shows that

But $y^{2} z>z^{2} x$ and $z^{2} x>x^{2} y$ give $y^{2}>z x$ and $z^{2}>x y$. Hence

$$
\left(y^{2}\right)\left(z^{2}\right)>(z x)(x y)
$$

This gives $y z>x^{2}$. Thus $x^{3}<x y z=(x z) y<\left(y^{2}\right) y=y^{3}$. This forces $x<y$ contradicting $x>y$.
Similarly, we arrive at a contradiction if $x>z>y$. The only possibility is $x=y=z$. For $x=y=z$, we get only one equation $x^{2}=1 / 2$. Since $x>0, x=1 / \sqrt{2}=y=z$.

