

5.1 Overview

We know that the square of a real number is always non-negative e.g. $(4)^2 = 16$ and $(-4)^2$ = 16. Therefore, square root of 16 is \pm 4. What about the square root of a negative number? It is clear that a negative number can not have a real square root. So we need to extend the system of real numbers to a system in which we can find out the square roots of negative numbers. Euler (1707 - 1783) was the first mathematician to

introduce the symbol *i* (iota) for positive square root of – 1 i.e., $i = \sqrt{-1}$.

5.1.1 *Imaginary numbers*

Square root of a negative number is called an imaginary number., for example,

$$
\sqrt{-9} = \sqrt{-1}\sqrt{9} = i3, \sqrt{-7} = \sqrt{-1}\sqrt{7} = i\sqrt{7}
$$

5.1.2 *Integral powers of i*

$$
i = \sqrt{-1}
$$
, $i^2 = -1$, $i^3 = i^2$, $i = -i$, $i^4 = (i^2)^2 = (-1)^2 = 1$.

To compute *i*ⁿ for $n > 4$, we divide *n* by 4 and write it in the form $n = 4m + r$, where *m* is quotient and *r* is remainder ($0 \le r \le 4$)

$$
i^{n} = i^{4m+r} = (i^{4})^{m} \cdot (i)^{r} = (1)^{m} (i)^{r} = i^{r}
$$

Hence *i*

and
$$
(i)^{-435} = i^{-(4 \times 108 + 3)} = (i)^2
$$

For example,
\n
$$
(i)^{39} = i^{4 \times 9 + 3} = (i^4)^9 \cdot (i)^3 = i^3 = -i
$$
\nand
\n
$$
(i)^{-435} = i^{-(4 \times 108 + 3)} = (i)^{-(4 \times 108)} \cdot (i)^{-3}
$$
\n
$$
1 \qquad 1 \qquad i
$$

$$
=\frac{1}{(i^4)^{108}}\cdot\frac{1}{(i)^3}=\frac{i}{(i)^4}=i
$$

- (i) If *a* and *b* are positive real numbers, then
	- $\sqrt{-a} \times \sqrt{-b} = \sqrt{-1} \sqrt{a} \times \sqrt{-1} \sqrt{b} = i \sqrt{a} \times i \sqrt{b} = -\sqrt{ab}$
- (ii) \sqrt{a} . $\sqrt{b} = \sqrt{ab}$ if *a* and *b* are positive or at least one of them is negative or zero. However, $\sqrt{a}\sqrt{b} \neq \sqrt{ab}$ if *a* and *b*, both are negative.

5.1.3 *Complex numbers*

- (a) A number which can be written in the form $a + ib$, where a, b are real numbers and $i = \sqrt{-1}$ is called a complex number.
- (b) If $z = a + ib$ is the complex number, then *a* and *b* are called real and imaginary parts, respectively, of the complex number and written as $\text{Re}(z) = a$, $\text{Im}(z) = b$.
- (c) Order relations "greater than" and "less than" are not defined for complex numbers.
- (d) If the imaginary part of a complex number is zero, then the complex number is known as purely real number and if real part is zero, then it is called purely imaginary number, for example, 2 is a purely real number because its imaginary part is zero and 3*i* is a purely imaginary number because its real part is zero.

5.1.4 *Algebra of complex numbers*

- (a) Two complex numbers $z_1 = a + ib$ and $z_2 = c + id$ are said to be equal if $a = c$ and $b = d$.
- (b) Let $z_1 = a + ib$ and $z_2 = c + id$ be two complex numbers then $z_1 + z_2 = (a + c) + i (b + d).$

5.1.5 *Addition of complex numbers satisfies the following properties*

- 1. As the sum of two complex numbers is again a complex number, the set of complex numbers is closed with respect to addition.
- 2. Addition of complex numbers is commutative, i.e., $z_1 + z_2 = z_2 + z_1$
- 3. Addition of complex numbers is associative, i.e., $(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)$
- 4. For any complex number $z = x + i y$, there exist 0, i.e., $(0 + 0i)$ complex number such that $z + 0 = 0 + z = z$, known as identity element for addition.
- 5. For any complex number $z = x + iy$, there always exists a number $-z = -a ib$ such that $z + (-z) = (-z) + z = 0$ and is known as the additive inverse of z.

5.1.6 *Multiplication of complex numbers*

Let $z_1 = a + ib$ and $z_2 = c + id$, be two complex numbers. Then

 z_1 , $z_2 = (a + ib) (c + id) = (ac - bd) + i (ad + bc)$

- 1. As the product of two complex numbers is a complex number, the set of complex numbers is closed with respect to multiplication.
- 2. Multiplication of complex numbers is commutative, i.e., $z_1 \cdot z_2 = z_2 \cdot z_1$
- 3. Multiplication of complex numbers is associative, i.e., $(z_1 \cdot z_2) \cdot z_3 = z_1 \cdot (z_2 \cdot z_3)$

4. For any complex number $z = x + iy$, there exists a complex number 1, i.e., $(1 + 0i)$ such that

 $z \cdot 1 = 1$. $z = z$, known as identity element for multiplication.

5. For any non zero complex number $z = x + i y$, there exists a complex number $\frac{1}{x}$ *z*

such that $z \cdot \frac{1}{-} = \frac{1}{z} \cdot z = 1$ $\frac{1}{z} = \frac{1}{z} \cdot z = 1$, i.e., multiplicative inverse of $a + ib = \frac{1}{a + ib} = \frac{a - ib}{a^2 + b^2}$.

 z_1 . $(z_2 + z_3) = z_1$. $z_2 + z_1$. z_3

6. For any three complex numbers z_1 , z_2 and z_3 ,

and $(z_1 + z_2) \cdot z_3 = z_1 \cdot z_3 + z_2 \cdot z_3$ i.e., for complex numbers multiplication is distributive over addition.

5.1.7 Let $z_1 = a + ib$ and $z_2 \neq 0$ = $c + id$. Then

$$
z_1 \div z_2 = \frac{z_1}{z_2} = \frac{a+ib}{c+id} = \frac{(ac+bd)}{c^2+d^2} + i\frac{(bc-ad)}{c^2+d^2}
$$

5.1.8 *Conjugate of a complex number*

Let $z = a + ib$ be a complex number. Then a complex number obtained by changing the sign of imaginary part of the complex number is called the conjugate of *z* and it is denoted by \overline{z} , i.e., $\overline{z} = a - ib$.

Note that additive inverse of *z* is $-a - ib$ but conjugate of *z* is $a - ib$.

We have :

1.
$$
\overline{z} = z
$$

2.
$$
z + \overline{z} = 2 \text{Re}(z), z - \overline{z} = 2 i \text{Im}(z)
$$

- 3. $z = \overline{z}$, if *z* is purely real.
- 4. $z + \overline{z} = 0 \Leftrightarrow z$ is purely imaginary
- 5. $z \cdot \overline{z} = \{Re(z)\}^2 + \{Im(z)\}^2$.

6.
$$
(z_1 + z_2) = \overline{z}_1 + \overline{z}_2, (z_1 - z_2) = \overline{z}_1 - \overline{z}_2
$$

7.
$$
(\overline{z_1} \cdot \overline{z_2}) = (\overline{z_1}) (\overline{z_2}) \cdot \left(\frac{z_1}{z_2}\right) = \frac{(\overline{z_1})}{(\overline{z_2})} (\overline{z_2} \neq 0)
$$

5.1.9 *Modulus of a complex number*

Let $z = a + ib$ be a complex number. Then the positive square root of the sum of square of real part and square of imaginary part is called modulus (absolute value) of *z* and it is denoted by $|z|$ i.e., $|z| = \sqrt{a^2 + b^2}$

In the set of complex numbers $z_1 > z_2$ or $z_1 < z_2$ are meaningless but

$$
|z_1| > |z_2|
$$
 or $|z_1| < |z_2|$

are meaningful because $|z_1|$ and $|z_2|$ are real numbers.

5.1.10 *Properties of modulus of a complex number*

1. $|z| = 0 \Leftrightarrow z = 0$ i.e., Re $(z) = 0$ and Im $(z) = 0$

2.
$$
|z| = |\overline{z}| = |-z|
$$

\n3. $-|z| \le \text{Re}(z) \le |z| \text{ and } -|z| \le \text{Im}(z) \le |z|$
\n4. $z|\overline{z}| = |z|^2, |z^2| = |\overline{z}|^2$
\n5. $|z_1 z_2| = |z_1| |z_2|, \left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|} (z_2 \ne 0)$
\n6. $|z_1 + z_2|^2 = |z_1|^2 + |z_2|^2 + 2\text{Re}(z_1 \overline{z_2})$

7.
$$
|z_1 - z_2|^2 = |z_1|^2 + |z_2|^2 - 2 \operatorname{Re} (z_1 \overline{z_2})
$$

8.
$$
|z_1 + z_2| \le |z_1| + |z_2|
$$

9.
$$
|z_1 - z_2| \ge |z_1| - |z_2|
$$

10. $|az_1-bz_2|^2 + |bz_1 + az_2|^2 = (a^2 + b^2) (|z_1|^2 + |z_2|^2)$ In particular:

$$
\left|z_1 - z_2\right|^2 + \left|z_1 + z_2\right|^2 = 2\left|\left|z_1\right|^2 + \left|z_2\right|^2\right|
$$

11. As stated earlier multiplicative inverse (reciprocal) of a complex number $z = a + ib \neq 0$ is

$$
\frac{1}{z} = \frac{a - ib}{a^2 + b^2} = \frac{\overline{z}}{|z|^2}
$$

5.2 Argand Plane

A complex number $z = a + ib$ can be represented by a unique point P (a, b) in the cartesian plane referred to a pair of rectangular axes. The complex number $0 + 0i$ represent the origin 0 (0,0). A purely real number *a*, i.e., $(a+0i)$ is represented by the point $(a, 0)$ on x - axis. Therefore, x -axis is called real axis. A purely imaginary number

ib, i.e., $(0 + ib)$ is represented by the point $(0, b)$ on *y*-axis. Therefore, *y*-axis is called imaginary axis.

Similarly, the representation of complex numbers as points in the plane is known as **Argand diagram**. The plane representing complex numbers as points is called complex plane or Argand plane or Gaussian plane.

If two complex numbers z_1 and z_2 be represented by the points P and Q in the complex plane, then

$$
|z_1 - z_2| = PQ
$$

5.2.1 *Polar form of a complex number*

Let P be a point representing a non-zero complex number $z = a + ib$ in the Argand plane. If OP makes an angle θ with the positive direction of *x*-axis, then $z = r (\cos\theta + i \sin\theta)$ is called the polar form of the complex number, where

 $r = |z| = \sqrt{a^2 + b^2}$ and tan $\theta = \frac{b}{z}$ $\frac{a}{a}$. Here θ is called argument or amplitude of *z* and we

write it as arg $(z) = \theta$.

The unique value of θ such that $-\pi \leq \theta \leq \pi$ is called the principal argument.

$$
\arg(z_1 \cdot z_2) = \arg(z_1) + \arg(z_2)
$$

$$
\arg\left(\frac{z_1}{z_2}\right) = \arg(z_1) - \arg(z_2)
$$

5.2.2 *Solution of a quadratic equation*

The equations $ax^2 + bx + c = 0$, where *a*, *b* and *c* are numbers (real or complex, $a \ne 0$) is called the general quadratic equation in variable *x*. The values of the variable satisfying the given equation are called roots of the equation.

The quadratic equation $ax^2 + bx + c = 0$ with real coefficients has two roots given

by
$$
\frac{-b+\sqrt{D}}{2a}
$$
 and $\frac{-b-\sqrt{D}}{2a}$, where D = b²-4ac, called the discriminant of the equation.

Notes

1. When $D = 0$, roots of the quadratic equation are real and equal. When $D > 0$, roots are real and unequal.

Further, if $a, b, c \in \mathbb{Q}$ and D is a perfect square, then the roots of the equation are rational and unequal, and if $a, b, c \in \mathbb{Q}$ and D is not a perfect square, then the roots are irrational and occur in pair.

Downloaded From :<http://cbseportal.com/>

78 EXEMPLAR PROBLEMS – MATHEMATICS

When $D < 0$, roots of the quadratic equation are non real (or complex).

2. Let α , β be the roots of the quadratic equation $ax^2 + bx + c = 0$, then sum of the roots

$$
(\alpha + \beta) = \frac{-b}{a}
$$
 and the product of the roots $(\alpha \cdot \beta) = \frac{c}{a}$.

3. Let S and P be the sum of roots and product of roots, respectively, of a quadratic equation. Then the quadratic equation is given by $x^2 - Sx + P = 0$.

5.2 Solved Exmaples

Short Answer Type

Example 1 Evaluate : $(1 + i)^6 + (1 - i)^3$ **Solution** $(1 + i)^6 = \{(1 + i)^2\}^3 = (1 + i^2 + 2i)^3 = (1 - 1 + 2i)^3 = 8$ $i^3 = -8i$ and $(1-i)^3 = 1 - i^3 - 3i + 3i^2 = 1 + i - 3i - 3 = -2 - 2i$ Therefore, $(1 + i)^6 + (1 - i)^3 = -8i - 2 - 2i = -2 - 10i$ **Example 2** If 1 $(x+iy)^{\frac{1}{3}} = a+ib$, where *x*, *y*, *a*, *b* \in R, show that $\frac{x}{a} - \frac{y}{b}$ $\frac{a^2-b^2}{a-b} = -2(a^2+b^2)$ 1

Solution
$$
(x+iy)^3 = a + ib
$$

\n \Rightarrow $x + iy = (a + ib)^3$
\ni.e., $x + iy = a^3 + i^3 b^3 + 3iab (a + ib)$
\n $= a^3 - ib^3 + i3a^2b - 3ab^2$
\n $= a^3 - 3ab^2 + i (3a^2b - b^3)$
\n \Rightarrow $x = a^3 - 3ab^2$ and $y = 3a^2b - b^3$
\nThus $\frac{x}{a} = a^2 - 3b^2$ and $\frac{y}{b} = 3a^2 - b^2$

Thus

So,
$$
\frac{x}{a} - \frac{y}{b} = a^2 - 3b^2 - 3a^2 + b^2 = -2a^2 - 2b^2 = -2(a^2 + b^2).
$$

Example 3 Solve the equation $z^2 = \overline{z}$, where $z = x + iy$

Solution
$$
z^2 = \overline{z}
$$
 $\implies x^2 - y^2 + i2xy = x - iy$
Therefore, $x^2 - y^2 = x$... (1) and $2xy = -y$... (2)

From (2), we have $y = 0$ or $x = -\frac{1}{2}$ $\overline{}$ When $y = 0$, from (1), we get $x^2 - x = 0$, i.e., $x = 0$ or $x = 1$. When $x =$ $-\frac{1}{2}$, from (1), we get $y^2 =$ $1 \t1$ $\frac{1}{4} + \frac{1}{2}$ or $y^2 =$ 3 $\frac{3}{4}$, i.e., $y = \pm \frac{\sqrt{3}}{2}$ $rac{1}{2}$. Hence, the solutions of the given equation are

$$
0 + i0, 1 + i0, -\frac{1}{2} + i \frac{\sqrt{3}}{2}, -\frac{1}{2} - i \frac{\sqrt{3}}{2}.
$$

Example 4 If the imaginary part of $\frac{2z+1}{z}$ 1 $^{+}$ $^{+}$ $\frac{2z+1}{iz+1}$ is – 2, then show that the locus of the point representing *z* in the argand plane is a straight line.

Solution Let $z = x + iy$. Then

$$
\frac{2z+1}{iz+1} = \frac{2(x+iy)+1}{i(x+iy)+1} = \frac{(2x+1)+i2y}{(1-y)+ix}
$$

$$
= \frac{\{(2x+1)+i2y\}}{\{(1-y)+ix\}} \times \frac{\{(1-y)-ix\}}{\{(1-y)-ix\}}
$$

$$
= \frac{(2x+1-y)+i(2y-2y^2-2x^2-x)}{1+y^2-2y+x^2}
$$

Thus
$$
\text{Im}\left(\frac{2z+1}{iz+1}\right) = \frac{2y-2y^2-2x^2-x}{1+y^2-2y+x^2}
$$

Im
$$
\left(\frac{2z+1}{iz+1}\right) = -2
$$
 (Given)

So

But

2 2^2 $\frac{2y-2y^2-2x^2-x}{1+y^2-2y+x^2}=-2$ $\frac{y-2y^2-2x^2-x}{1+y^2-2y+x^2} =$ $y^2 - 2y + x$

 \Rightarrow 2*y* – 2*x*² – *x* = – 2 – 2*y*² + 4*y* – 2*x*² i.e., $x + 2y - 2 = 0$, which is the equation of a line.

Example 5 If $|z^2 - 1| = |z|^2 + 1$, then show that *z* lies on imaginary axis. **Solution** Let $z = x + iy$. Then $|z^2 - 1| = |z|^2 + 1$

⇒ $|x^2 - y^2 - 1 + i 2xy| = |x + iy|^2 + 1$ \Rightarrow $(x^2 - y^2 - 1)^2 + 4x^2y^2 = (x^2 + y^2 + 1)^2$ \Rightarrow 4*x*² = 0 i.e., *x* = 0 Hence *z* lies on *y*-axis.

Example 6 Let z_1 and z_2 be two complex numbers such that $\overline{z_1} + i \overline{z_2} = 0$ and arg $(z_1 z_2) = \pi$. Then find arg (z_1) .

Solution Given that $\overline{z_1} + i\overline{z_2} = 0$ $\Rightarrow z_1 = i z_2, \text{ i.e., } z_2 = -i z_1$ Thus arg $(z_1 z_2) = \arg z_1 + \arg (-iz_1) = \pi$ \Rightarrow arg $(-i z_1^2) = \pi$ \Rightarrow arg $(-i)$ + arg (z_1^2) = π \Rightarrow arg $(-i) + 2 \arg(z_1) = \pi$ \Rightarrow $\frac{1}{2}$ $-\pi$ $+ 2 \arg(z_1) = \pi$ \Rightarrow arg $(z_1) = \frac{3}{7}$ 4 π

Example 7 Let z_1 and z_2 be two complex numbers such that $|z_1 + z_2| = |z_1| + |z_2|$. Then show that arg (z_1) – arg $(z_2) = 0$.

Solution Let $z_1 = r_1 (\cos \theta_1 + i \sin \theta_1)$ and $z_2 = r_2 (\cos \theta_2 + i \sin \theta_2)$ where $r_1 = |z_1|$, arg $(z_1) = \theta_1$, $r_2 = |z_2|$, arg $(z_2) = \theta_2$. We have, $|z_1 + z_2| = |z_1| + |z_2|$ $=$ $|r_1 (\cos \theta_1 + \cos \theta_2) + r_2 (\cos \theta_2 + \sin \theta_2)| = r_1 + r_2$ $= r_1^2 + r_2^2 + 2r_1r_2 \cos(\theta_1 - \theta_2) = (r_1 + r_2)^2 \implies \cos(\theta_1 - \theta_2) = 1$ \Rightarrow $\theta_1 - \theta_2$ i.e. arg $z_1 = \arg z_2$ **Example 8** If z_1 , z_2 , z_3 are complex numbers such that 1 $\frac{1}{2}$ $\frac{1}{3}$ -1 -2 -2 $|z_1| = |z_2| = |z_3| = \left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right| = 1$, then find the value of $|z_1 + z_2 + z_3|$.

Solution $|z_1| = |z_2| = |z_3| = 1$

$$
\Rightarrow \qquad |z_1|^2 = |z_2|^2 = |z_3|^2 = 1
$$

$$
\Rightarrow \qquad z_1 \overline{z}_1 = z_2 \overline{z}_2 = z_3 \overline{z}_3 = 1
$$

$$
\Rightarrow \qquad \overline{z}_1 = \frac{1}{z_1}, \overline{z}_2 = \frac{1}{z_2}, \overline{z}_3 = \frac{1}{z_3}
$$

Given that
$$
\left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right| = 1
$$

$$
\Rightarrow \qquad |\overline{z_1} + \overline{z_2} + \overline{z_3}| = 1, \text{ i.e., } \left| \overline{z_1 + z_2 + z_3} \right| = 1
$$

$$
\Rightarrow \qquad |z_1 + z_2 + z_3| = 1
$$

Example 9 If a complex number *z* lies in the interior or on the boundary of a circle of radius 3 units and centre
$$
(-4, 0)
$$
, find the greatest and least values of $|z+1|$.

Solution Distance of the point representing *z* from the centre of the circle is $|z - (-4 + i0)| = |z + 4|$.

According to given condition $|z+4| \leq 3$.

Now
$$
|z + 1| = |z + 4 - 3| \le |z + 4| + |-3| \le 3 + 3 = 6
$$

Therefore, greatest value of $|z + 1|$ is 6.

Since least value of the modulus of a complex number is zero, the least value of $|z+1|=0$.

Example 10 Locate the points for which $3 < |z| < 4$

Solution $|z| < 4 \Rightarrow x^2 + y^2 < 16$ which is the interior of circle with centre at origin and radius 4 units, and $|z| > 3 \Rightarrow x^2 + y^2 > 9$ which is exterior of circle with centre at origin and radius 3 units. Hence $3 < |z| < 4$ is the portion between two circles $x^2 + y^2 = 9$ and $x^2 + y^2 = 16$.

Example 11 Find the value of $2x^4 + 5x^3 + 7x^2 - x + 41$, when $x = -2 - \sqrt{3}i$ **Solution** $x + 2 = -\sqrt{3}i \implies x^2 + 4x + 7 = 0$ Therefore $2x^4 + 5x^3 + 7x^2 - x + 41 = (x^2 + 4x + 7)(2x^2 - 3x + 5) + 6$ $= 0 \times (2x^2 - 3x + 5) + 6 = 6.$

Example 12 Find the value of P such that the difference of the roots of the equation $x^2 - Px + 8 = 0$ is 2.

Solution Let α , β be the roots of the equation $x^2 - Px + 8 = 0$ Therefore $\alpha + \beta = P$ and $\alpha \cdot \beta = 8$.

Now $\alpha - \beta = \pm \sqrt{(\alpha + \beta)^2 - 4\alpha\beta}$

Therefore $2 = \pm \sqrt{P^2 - 32}$

 \Rightarrow P² – 32 = 4, i.e., P = ± 6.

Example 13 Find the value of *a* such that the sum of the squares of the roots of the equation $x^2 - (a-2)x - (a+1) = 0$ is least.

Solution Let α , β be the roots of the equation

Therefore,
$$
\alpha + \beta = a - 2
$$
 and $\alpha\beta = -(a + 1)$
\nNow
\n
$$
\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta
$$
\n
$$
= (a - 2)^2 + 2(a + 1)
$$
\n
$$
= (a - 1)^2 + 5
$$

Therefore, $\alpha^2 + \beta^2$ will be minimum if $(a-1)^2 = 0$, i.e., $a = 1$.

Long Answer Type

Example 14 Find the value of *k* if for the complex numbers z_1 and z_2 ,

$$
\left|1-\overline{z}_1z_2\right|^2 - \left|z_1-z_2\right|^2 = k\left(1-\left|z_1\right|^2\right)\left(1-\left|z_2\right|^2\right)
$$

Solution

L.H.S. =
$$
|1-\overline{z_1}z_2|^2 - |z_1 - z_2|^2
$$

\t\t= $(1-\overline{z_1}z_2)(\overline{1-\overline{z_1}z_2}) - (z_1-z_2)(\overline{z_1-z_2})$
\t\t= $(1-\overline{z_1}z_2)(1-z_1\overline{z_2}) - (z_1-z_2)(\overline{z_1}-\overline{z_2})$
\t\t= $1 + z_1 \overline{z_1} z_2 \overline{z_2} - z_1 \overline{z_1} - z_2 \overline{z_2}$
\t\t= $1 + |z_1|^2 \cdot |z_2|^2 - |z_1|^2 - |z_2|^2$
\t\t= $(1-|z_1|^2)(1-|z_2|^2)$
R.H.S. = $k (1 - |z_1|^2)(1-|z_2|^2)$
\t $k = 1$

Hence, equating LHS and RHS, we get $k = 1$. **Example 15** If z_1 and z_2 both satisfy $z + \overline{z} = 2|z-1|$ arg $(z_1 - z_2) = \frac{\pi}{4}$ π , then find $Im (z_1 + z_2).$ **Solution** Let $z = x + iy$, $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$. Then $z + \overline{z} = 2|z-1|$ ⇒ $(x + iy) + (x - iy) = 2 |x-1+iy|$ ⇒ $2x = 1 + y^2$ (1) Since z_1 and z_2 both satisfy (1), we have $2x_1 = 1 + y_1^2$... and $2x_2 = 1 + y_2^2$ ⇒ 2 $(x_1 - x_2) = (y_1 + y_2) (y_1 - y_2)$ ⇒ 2 = $(y_1 + y_2)$ $\frac{y_1 - y_2}{y_1 - y_2}$ $\left(\frac{y_1 - y_2}{x_1 - x_2}\right)$ $x_1 - x$... (2) Again $z_1 - z_2 = (x_1 - x_2) + i (y_1 - y_2)$ Therefore, $\tan \theta = \frac{y_1 - y_2}{x_1 - x_2}$ $1 - \lambda_2$ \overline{a} $\overline{}$ $y_1 - y$ $x_1 - x$, where $θ = arg(z_1 - z_2)$ ⇒ $1 - y_2$ $1 - \lambda_2$ $an \frac{\pi}{4} = \frac{y_1 - y_2}{x_1 - x_2}$ $\begin{cases} \sin \left(\cos \left(\frac{\pi}{2} \right) \right) & \sin \left(\frac{\pi}{2} \right) \end{cases}$ 4 $\left(\begin{array}{cc} 0 & \pi \end{array} \right)$ $\left(\text{since } \theta = \frac{\pi}{4}\right)$ i.e., $1 = \frac{y_1 - y_2}{1}$ $1 = \frac{y_1 - y_2}{x_1 - x_2}$ $x_1 - x$ From (2), we get $2 = y_1 + y_2$, i.e., Im $(z_1 + z_2) = 2$ **Objective Type Questions Example 16** Fill in the blanks: (i) The real value of '*a*' for which $3i^3 - 2a^2 + (1 - a)i + 5$ is real is _______.

- (ii) If $|z|=2$ and arg $(z) = \frac{\pi}{4}$, then $z =$ _________.
- (iii) The locus of *z* satisfying arg $(z) = \frac{\pi}{3}$ π is _______.
- (iv) The value of $(-\sqrt{-1})^{4n-3}$, where $n \in \mathbb{N}$, is _____.

Downloaded From :<http://cbseportal.com/>

84 EXEMPLAR PROBLEMS – MATHEMATICS

- (v) The conjugate of the complex number $\frac{1}{1}$ 1 - $^{+}$ *i i* is .
- (vi) If a complex number lies in the third quadrant, then its conjugate lies in the $______\$.

(vii) If
$$
(2 + i) (2 + 2i) (2 + 3i) ... (2 + ni) = x + iy
$$
, then 5.8.13 ... $(4 + n^2) =$ ______.

Solution

(i) $3i^3 - 2ai^2 + (1 - a)i + 5 = -3i + 2a + 5 + (1 - a)i$ $= 2a + 5 + (-a - 2)$ *i*, which is real if $-a - 2 = 0$ i.e. $a = -2$. (ii) $z =$ $z \Biggl[\Biggl(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \Biggr) = 2 \Biggl(\frac{1}{\sqrt{2}} + i \frac{1}{\sqrt{2}} \Biggr) = \sqrt{2} (1 + i)$

(iii) Let
$$
z = x + iy
$$
. Then its polar form is $z = r(\cos \theta + i \sin \theta)$, where $\tan \theta = \frac{y}{x}$ and
\n θ is arg (*z*). Given that $\theta = \frac{\pi}{3}$. Thus.
\n
$$
\tan \frac{\pi}{3} = \frac{y}{x} \implies y = \sqrt{3}x
$$
, where $x > 0$, $y > 0$.

Hence, locus of *z* is the part of $y = \sqrt{3}x$ in the first quadrant except origin.

(iv) Here $(-\sqrt{-1})^{4n-3} = (-i)^{4n-3} = (-i)^{4n} (-i)^{-3} = \frac{1}{(-i)^3}$ *i* $=\frac{1}{-i^3}=\frac{1}{i}=\frac{i}{i^2}=-i$ *i i i* (v) 2 2 $1-i$ $1-i$ $1-i$ $1+i^2-2i$ $1-i-2$ $1+i$ $1+i$ $1-i$ $1-i^2$ $1+1$ $\frac{-i}{i} = \frac{1-i}{i} \times \frac{1-i}{i} = \frac{1+i^2-2i}{i} = \frac{1-1-2i}{i} = +i$ 1+*i* 1-*i* 1-*i*² 1+ $\frac{i}{i} = \frac{1-i}{i} \times \frac{1-i}{i} = \frac{1+i^2-2i}{i} = \frac{1-1-2i}{i} = -i$ i $1+i$ $1-i$ $1-i$ \overline{a}

Hence, conjugate of $\frac{1}{1}$ 1 $^{+}$ *i i* is *i*.

(vi) Conjugate of a complex number is the image of the complex number about the *x*-axis. Therefore, if a number lies in the third quadrant, then its image lies in the second quadrant.

(vii) Given that
$$
(2 + i) (2 + 2i) (2 + 3i) ... (2 + ni) = x + iy
$$
 ... (1)

$$
\Rightarrow \qquad (\overline{2+i}) \ (\overline{2+2i}) \ (\overline{2+3i}) \dots (\overline{2+ni}) = (\overline{x+iy}) = (x-iy)
$$

i.e., $(2-i) (2-2i) (2-3i) \dots (2-ni) = x-iy$... (2)

Multiplying (1) and (2), we get 5.8.13 ... $(4 + n^2) = x^2 + y^2$.

Example 17 State true or false for the following:

- (i) Multiplication of a non-zero complex number by *i* rotates it through a right angle in the anti- clockwise direction.
- (ii) The complex number $\cos\theta + i \sin\theta$ can be zero for some θ .
- (iii) If a complex number coincides with its conjugate, then the number must lie on imaginary axis.
- (iv) The argument of the complex number $z = (1 + i\sqrt{3}) (1 + i) (\cos \theta + i \sin \theta)$ is 7 π + θ
- 12 (v) The points representing the complex number *z* for which $|z+1| < |z-1|$ lies in the interior of a circle.
	- (vi) If three complex numbers z_1 , z_2 and z_3 are in A.P., then they lie on a circle in the complex plane.
	- (vii) If *n* is a positive integer, then the value of $i^n + (i)^{n+1} + (i)^{n+2} + (i)^{n+3}$ is 0.

Solution

- (i) True. Let $z = 2 + 3i$ be complex number represented by OP. Then $iz = -3 + 2i$, represented by OQ, where if OP is rotated in the anticlockwise direction through a right angle, it coincides with OQ.
- (ii) False. Because $\cos\theta + i\sin\theta = 0 \implies \cos\theta = 0$ and $\sin\theta = 0$. But there is no value of θ for which cosθ and sinθ both are zero.
- (iii) False, because $x + iy = x iy \implies y = 0 \implies$ number lies on *x*-axis.
- (iv) True, $\arg(z) = \arg(1 + i\sqrt{3}) + \arg(1 + i) + \arg(\cos\theta + i\sin\theta)$

$$
\frac{\pi}{3} + \frac{\pi}{4} + \theta = \frac{7\pi}{12} + \theta
$$

- (v) False, because $|x+iy+1| < |x+iy-1|$ ⇒ $(x+1)^2 + y^2 < (x-1)^2 + y^2$ which gives $4x < 0$.
- (vi) False, because if z_1 , z_2 and z_3 are in A.P., then $z_2 = \frac{z_1 + z_3}{2}$ $z_2 = \frac{z_1 + z_3}{2} \Rightarrow z_2$ is the midpoint of z_1 and z_3 , which implies that the points z_1 , z_2 , z_3 are collinear.

(vii) True, because
$$
i^n + (i)^{n+1} + (i)^{n+2} + (i)^{n+3}
$$

= $i^n (1 + i + i^2 + i^3) = i^n (1 + i - 1 - i)$
= $i^n (0) = 0$

Example 18 Match the statements of column A and B.

(a) The value of $1+i^2 + i^4 + i^6 + \dots i^{20}$ is (i) purely imaginary complex number

- (b) The value of i^{-1097} is
- (c) Conjugate of 1+*i* lies in (iii) second quadrant $1 + 2i$

(d)
$$
\overline{1-i}
$$
 lies in

- (e) If *a*, *b*, $c \in \mathbb{R}$ and $b^2 4ac \le 0$, then the roots of the equation $ax^2 + bx + c = 0$ are non real (complex) and
- (f) If *a*, *b*, $c \in \mathbb{R}$ and $b^2 4ac > 0$, and $b^2 - 4ac$ is a perfect square, then the roots of the equation $ax^2 + bx + c = 0$

Column A Column B

-
- (ii) purely real complex number
-
- *(iv)* Fourth quadrant
- 4*ac* < 0, (v) may not occur in conjugate pairs
- (vi) may occur in conjugate pairs

Solution

(a) \Leftrightarrow (ii), because $1 + i^2 + i^4 + i^6 + ... + i^{20}$ $= 1 - 1 + 1 - 1 + \dots + 1 = 1$ (which is purely a real complex number)

(b)
$$
\Leftrightarrow
$$
 (i), because $i^{-1097} = \frac{1}{(i)^{1097}} = \frac{1}{i^{4 \times 274 + 1}} = \frac{1}{\{(i)^4\}^{274} (i)} = \frac{1}{i} = \frac{i}{i^2} = -i$

which is purely imaginary complex number.

(c) \Leftrightarrow (iv), conjugate of $1 + i$ is $1 - i$, which is represented by the point (1, -1) in the fourth quadrant.

(d)
$$
\Leftrightarrow
$$
 (iii), because $\frac{1+2i}{1-i} = \frac{1+2i}{1-i} \times \frac{1+i}{1+i} = \frac{-1+3i}{2} = -\frac{1}{2} + \frac{3}{2}i$, which is
represented by the point $\left(-\frac{1}{2}, \frac{3}{2}\right)$ in the second quadrant.

(e) \Leftrightarrow (vi), If $b^2 - 4ac < 0 = D < 0$, i.e., square root of D is a imaginary number, therefore, roots are $x = \frac{-b \pm \text{Imaginary Number}}{2}$ 2 $x = \frac{-b \pm \sqrt{a^2 - 4ac}}{2a}$ *a* , i.e., roots are in conjugate pairs.

(f) \Leftrightarrow (v), Consider the equation $x^2 - (5 + \sqrt{2}) x + 5 \sqrt{2} = 0$, where $a = 1$, $b = -(5 + \sqrt{2})$, $c = 5\sqrt{2}$, clearly *a*, *b*, $c \in R$. Now $D = b^2 - 4ac = \{-(5 + \sqrt{2})\}^2 - 4.1.5\sqrt{2} = (5 - \sqrt{2})^2$.

Therefore $x = \frac{5 + \sqrt{2} \pm 5 - \sqrt{2}}{2} = 5$, $\sqrt{2}$ which do not form a conjugate pair.

Example 19 What is the value of
$$
\frac{i^{4n+1} - i^{4n-1}}{2}
$$
?
Solution *i*, because
$$
\frac{i^{4n+1} - i^{4n-1}}{2} = \frac{i^{4n}i - i^{4n}i^{-i}}{2}
$$

$$
= \frac{i - \frac{1}{i}}{2} = \frac{i^{2} - 1}{2i} = \frac{-2}{2i} = i
$$

Example 20 What is the smallest positive integer *n*, for which $(1 + i)^{2n} = (1 - i)^{2n}$? **Solution** $n = 2$, because $(1 + i)^{2n} = (1 - i)^{2n} = \left(\frac{1+i}{1+i}\right)^2$ 1 $\left(\frac{1+i}{1-i}\right)^{2n} =$

i \Rightarrow (*i*)^{2*n*}= 1 which is possible if *n* = 2 $\therefore i^4 = 1$ **Example 21** What is the reciprocal of $3 + \sqrt{7}i$

Solution Reciprocal of $z = \frac{z}{1 + z^2}$ *z z* Therefore, reciprocal of $3 + \sqrt{7} i = \frac{3 - \sqrt{7} i}{16} = \frac{3}{16} - \frac{\sqrt{7} i}{16}$

Example 22 If $z_1 = \sqrt{3} + i\sqrt{3}$ and $z_2 = \sqrt{3} + i$, then find the quadrant in which

$$
\left(\frac{z_1}{z_2}\right)
$$
 lies.
Solution
$$
\frac{z_1}{z_2} = \frac{\sqrt{3} + i\sqrt{3}}{\sqrt{3} + i} = \left(\frac{3 + \sqrt{3}}{4}\right) + \left(\frac{3 - \sqrt{3}}{4}\right)i
$$

which is represented by a point in first quadrant.

Example 23 What is the conjugate of
$$
\frac{\sqrt{5+12i} + \sqrt{5-12i}}{\sqrt{5+12i} - \sqrt{5-12i}}
$$
?

Solution Let

$$
z = \frac{\sqrt{5+12i} + \sqrt{5-12i}}{\sqrt{5+12i} - \sqrt{5-12i}} \times \frac{\sqrt{5+12i} + \sqrt{5-12i}}{\sqrt{5+12i} + \sqrt{5-12i}}
$$

$$
= \frac{5+12i+5-12i+2\sqrt{25+144}}{5+12i-5+12i}
$$

$$
= \frac{3}{2i} = \frac{3i}{-2} = 0 - \frac{3}{2}i
$$

Therefore, the conjugate of $z = 0 +$ 2 *i*

Example 24 What is the principal value of amplitude of $1 - i$?

Solution Let θ be the principle value of amplitude of $1 - i$. Since

$$
\tan \theta = -1 \Rightarrow \tan \theta = \tan \left(-\frac{\pi}{4} \right) \Rightarrow \theta = -\frac{\pi}{4}
$$

Example 25 What is the polar form of the complex number $(i^{25})^3$? **Solution** $z = (i^{25})^3 = (i)^{75} = i^{4 \times 18 + 3} = (i^4)^{18} (i)^3$

$$
= i^3 = -i = 0 - i
$$

Polar form of $z = r(\cos \theta + i \sin \theta)$

$$
= 1\left\{\cos\left(-\frac{\pi}{2}\right) + i\sin\left(-\frac{\pi}{2}\right)\right\}
$$

$$
= \cos\frac{\pi}{2} - i\sin\frac{\pi}{2}
$$

Example 26 What is the locus of *z*, if amplitude of $z - 2 - 3i$ is $\frac{1}{4}$ π ? **Solution** Let $z = x + iy$. Then $z - 2 - 3i = (x - 2) + i (y - 3)$ Let θ be the amplitude of $z - 2 - 3i$. Then $\tan \theta = \frac{y - 3}{x - 2}$ *x*

$$
\Rightarrow \qquad \tan\frac{\pi}{4} = \frac{y-3}{x-2} \left(\text{since } \theta = \frac{\pi}{4} \right)
$$

$$
\Rightarrow \qquad 1 = \frac{y-3}{x-2} \text{ i.e. } x - y + 1 = 0
$$

Hence, the locus of *z* is a straight line.

Example 27 If $1 - i$, is a root of the equation $x^2 + ax + b = 0$, where $a, b \in \mathbb{R}$, then find the values of *a* and *b*.

Solution Sum of roots 1 *a* $= (1 - i) + (1 + i) \Rightarrow a = -2.$ (since non real complex roots occur in conjugate pairs)

Product of roots, $\frac{b}{1} = (1 - i)(1 + i) \Rightarrow b = 2$

Choose the correct options out of given four options in each of the Examples from 28 to 33 (M.C.Q.).

Example 28 $1 + i^2 + i^4 + i^6 + \dots + i^{2n}$ is

(A) positive (B) negative (C) 0 (D) can not be evaluated

Solution (D), $1 + i^2 + i^4 + i^6 + \dots + i^{2n} = 1 - 1 + 1 - 1 + \dots$ (-1)^{*n*} which can not be evaluated unless *n* is known.

Example 29 If the complex number $z = x + iy$ satisfies the condition $|z+1| = 1$, then

z lies on

- (A) *x*-axis
- (B) circle with centre (1, 0) and radius 1
- (C) circle with centre $(-1, 0)$ and radius 1
- (D) *y*-axis

Solution (C), $|z+1|=1 \Rightarrow |(x+1)+iy|=1$

$$
\Rightarrow \qquad (x+1)^2 + y^2 = 1
$$

which is a circle with centre $(-1, 0)$ and radius 1.

Example 30 The area of the triangle on the complex plane formed by the complex numbers z , $- iz$ and $z + iz$ is:

(A)
$$
|z|^2
$$

\n(B) $|\overline{z}|^2$
\n(C) $\frac{|z|^2}{2}$
\n(D) none of these

Solution (C), Let $z = x + iy$. Then $-iz = y - ix$. Therefore, $z + iz = (x - y) + i(x + y)$

Required area of the triangle = $\frac{1}{2}(x^2 + y^2)$ 2 $(x^2 + y^2) =$ 2 2 *z*

Example 31 The equation $|z+1-i| = |z-1+i|$ represents a

- (A) straight line (B) circle
- (C) parabola (D) hyperbola

Solution (A), $|z+1-i| = |z-1+i|$

$$
\Rightarrow \qquad |z - (-1 + i)| = |z - (1 - i)|
$$

- \Rightarrow PA = PB, where A denotes the point (-1, 1), B denotes the point (1, -1) and P denotes the point (*x*, *y*)
- ⇒ *z* lies on the perpendicular bisector of the line joining A and B and perpendicular bisector is a straight line.

Example 32 Number of solutions of the equation $z^2 + |z|^2 = 0$ is

- (A) 1 (B) 2
- (C) 3 (D) infinitely many

Solution (D), $z^2 + |z|^2 = 0$, $z \neq 0$

$$
\Rightarrow \quad x^2 - y^2 + i2xy + x^2 + y^2 = 0
$$

\n
$$
\Rightarrow \quad 2x^2 + i2xy = 0 \Rightarrow 2x (x + iy) = 0
$$

\n
$$
\Rightarrow \quad x = 0 \text{ or } x + iy = 0 \text{ (not possible)}
$$

Therefore, $x = 0$ and $z \neq 0$

So *y* can have any real value. Hence infinitely many solutions.

Example 33 The amplitude of
$$
\sin\frac{\pi}{5} + i(1-\cos\frac{\pi}{5})
$$
 is
\n(A) $\frac{2\pi}{5}$ (B) $\frac{\pi}{5}$ (C) $\frac{\pi}{15}$ (D) $\frac{\pi}{10}$
\nSolution (D), Here $r \cos \theta = \sin\left(\frac{\pi}{5}\right)$ and $r \sin \theta = 1 - \cos\frac{\pi}{5}$

Therefore,
$$
\tan \theta = \frac{1 - \cos \frac{\pi}{5}}{\sin \frac{\pi}{5}} = \frac{2 \sin^2 \left(\frac{\pi}{10}\right)}{2 \sin \left(\frac{\pi}{10}\right) \cdot \cos \left(\frac{\pi}{10}\right)}
$$

\n $\Rightarrow \tan \theta = \tan \left(\frac{\pi}{10}\right) \text{i.e., } \theta = \frac{\pi}{10}$

5.3 EXERCISE

Short Answer Type

- **1.** For a positive integer *n*, find the value of $(1 i)^n \left(1 \frac{1}{i}\right)^n$ *i* $\sum_{i=1}^{13}$ $(i^n + i^{n+1})$
- **2.** Evaluate 1 $(iⁿ + iⁿ⁺¹)$ $\sum_{n=1}^{n}$ $(i^{n}+i^{n+1})$, where $n \in \mathbb{N}$. **3.** If $\left(\frac{1+i}{1+i}\right)^3 - \left(\frac{1-i}{1+i}\right)^3 = x + iy$, then find (x, y) .

4. If
$$
\frac{(1+i)^2}{2-i} = x + iy
$$
, then find the value of $x + y$.

5. If
$$
\left(\frac{1-i}{1+i}\right)^{100} = a + ib
$$
, then find (a, b) .

- **6.** If $a = \cos \theta + i \sin \theta$, find the value of $\frac{1}{b}$ 1 $\ddot{}$ \overline{a} $\frac{a}{a}$.
- **7.** If $(1 + i) z = (1 i) \overline{z}$, then show that $z = -i\overline{z}$.
- **8.** If $z = x + iy$, then show that $z\overline{z} + 2(z + \overline{z}) + b = 0$, where $b \in \mathbb{R}$, represents a circle.
- **9.** If the real part of $\frac{\overline{z}+2}{\overline{z}}$ 1 $^{+}$ $\overline{}$ *z z* is 4, then show that the locus of the point representing *z* in the complex plane is a circle.
- **10.** Show that the complex number *z*, satisfying the condition arg 1 $\left(\frac{z-1}{z+1}\right)$ $\left(\frac{z}{z+1}\right) = \frac{z}{4}$ π lies on a circle.
- **11.** Solve the equation $|z| = z + 1 + 2i$.

Long Answer Type

- **12.** If $|z+1| = z + 2 (1 + i)$, then find *z*.
- **13.** If arg $(z 1) = \arg(z + 3i)$, then find $x 1 : y$. where $z = x + iy$ **14.** Show that 2 3 \overline{a} $\overline{}$ *z* $\left| \frac{z-2}{z-3} \right|$ = 2 represents a circle. Find its centre and radius.
- **15.** If $\frac{z-1}{z-1}$ 1 \overline{a} $\ddot{}$ *z* $\frac{z-1}{z+1}$ is a purely imaginary number $(z \neq -1)$, then find the value of $|z|$.
- **16.** z_1 and z_2 are two complex numbers such that $|z_1|=|z_2|$ and arg (z_1) + arg (z_2) = π , then show that $z_1 = -\overline{z}_2$.
- **17.** If $|z_1| = 1$ ($z_1 \neq -1$) and $z_2 = \frac{z_1}{z_1}$ 1 1 $z_2 = \frac{z_1 - 1}{z_1 + 1}$ $\frac{x_1}{z_1+1}$, then show that the real part of z_2 is zero.
- **18.** If z_1 , z_2 and z_3 , z_4 are two pairs of conjugate complex numbers, then find

$$
\arg\left(\frac{z_1}{z_4}\right) + \arg\left(\frac{z_2}{z_3}\right).
$$

19. If
$$
|z_1| = |z_2| = ... = |z_n| = 1
$$
, then
\nshow that $|z_1 + z_2 + z_3 + ... + z_n| = \left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} + ... + \frac{1}{z_n} \right|$.

20. If for complex numbers z_1 and z_2 , arg (z_1) – arg $(z_2) = 0$, then show that $|z_1 - z_2| = |z_1| - |z_2|$

 $\frac{1}{2}$ $\frac{2}{3}$

- **21.** Solve the system of equations Re $(z^2) = 0$, $|z| = 2$.
- **22.** Find the complex number satisfying the equation $z + \sqrt{2} |(z+1)| + i = 0$.
- **23.** Write the complex number $z = \frac{1}{\sqrt{2\pi}}$ $\cos\frac{\pi}{2}+i\sin$ $3 \frac{3}{3}$ $=\frac{1-i}{\cos\frac{\pi}{2}+i\sin\frac{\pi}{2}}$ $z = \frac{1-i}{\sqrt{2i}}$ *i* in polar form.

24. If *z* and *w* are two complex numbers such that $|zw| = 1$ and arg $(z) - arg(w) =$ 2 $\frac{\pi}{2}$, then show that $\overline{z} w = -i$.

Objective Type Questions

- **25.** Fill in the blanks of the following
	- (i) For any two complex numbers z_1 , z_2 and any real numbers *a*, *b*, $|az_1-bz_2|^2+|bz_1+az_2|^2=....$
	- (ii) The value of 25 9 is
	- (iii) The number $\frac{(1-i)^3}{2}$ 3 $(1 - i)$ 1 $\overline{}$ \overline{a} *i i* is equal to
	- (iv) The sum of the series $i + i^2 + i^3 + ...$ upto 1000 terms is
	- (v) Multiplicative inverse of 1 + *i* is
	- (vi) If z_1 and z_2 are complex numbers such that $z_1 + z_2$ is a real number, then $z_2 = ...$
	- (vii) arg (z) + arg \overline{z} $(\overline{z} \neq 0)$ is
	- (viii) If $|z+4| \le 3$, then the greatest and least values of $|z+1|$ are and

(ix) If
$$
\left| \frac{z-2}{z+2} \right| = \frac{\pi}{6}
$$
, then the locus of z is

(x) If
$$
|z| = 4
$$
 and arg $(z) = \frac{5\pi}{6}$, then $z =$

- **26.** State True or False for the following :
	- (i) The order relation is defined on the set of complex numbers.
	- (ii) Multiplication of a non zero complex number by $-i$ rotates the point about origin through a right angle in the anti-clockwise direction.
	- (iii) For any complex number *z* the minimum value of $|z| + |z-1|$ is 1.
	- (iv) The locus represented by $|z-1| = |z-i|$ is a line perpendicular to the join of $(1, 0)$ and $(0, 1)$.
	- (v) If *z* is a complex number such that $z \neq 0$ and Re (*z*) = 0, then Im (z^2) = 0.
	- (vi) The inequality $|z-4|<|z-2|$ represents the region given by $x > 3$.

Downloaded From :<http://cbseportal.com/>

EXEMPLAR PROBLEMS – MATHEMATICS

- (vii) Let z_1 and z_2 be two complex numbers such that $|z_1 + z_2| = |z_1| + |z_2|$, then $arg (z_1 - z_2) = 0.$
- (viii) 2 is not a complex number.
- **27.** Match the statements of Column A and Column B.

Column A Column B

(a) The polar form of $i + \sqrt{3}$ is (i) Perpendicular bisector of segment

(b) The amplitude of
$$
-1 + \sqrt{-3}
$$
 is

- (c) If $|z+2|=|z-2|$, then locus of *z* is
-
- (e) Region represented by

$$
|z+4i| \ge 3
$$
 is

- joining $(-2, 0)$ and $(2, 0)$
- (b) The amplitude of $-1 + \sqrt{-3}$ is (ii) On or outside the circle having centre at $(0, -4)$ and radius 3.

(iii)
$$
\frac{2\pi}{3}
$$

(d) If $|z+2i|=|z-2i|$, then (iv) Perpendicular bisector of segment locus of *z* is joining $(0, -2)$ and $(0, 2)$.

(v)
$$
2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)
$$

- (f) Region represented by (vi) On or inside the circle having centre $|z+4| \leq 3$ is (– 4, 0) and radius 3 units.
- (g) Conjugate of $\frac{1+2}{1}$ 1 $\ddot{}$ \overline{a} *i i* (vii) First quadrant
- (h) Reciprocal of $1 i$ lies in (viii) Third quadrant

28. What is the conjugate of
$$
\frac{2-i}{(1-2i)^2}
$$
?

29. If $|z_1| = |z_2|$, is it necessary that $z_1 = z_2$? **30.** If $(a^2+1)^2$ 2 $\ddot{}$ \overline{a} *a* $\frac{a}{a-i} = x + iy$, what is the value of $x^2 + y^2$?

- **31.** Find *z* if $|z|=4$ and arg (z) = 5 $\frac{5\pi}{6}$.
- **32.** Find $(1+i)\frac{(2+i)}{(3+i)}$ $^{+}$ *i*) $\frac{(2+i)}{(2+i)}$ *i*
- **33.** Find principal argument of $(1 + i\sqrt{3})^2$.
- **34.** Where does *z* lie, if $\left| \frac{z-5i}{5} \right| = 1$ $\left|\frac{z-5i}{z+5i}\right|=1$.

Choose the correct answer from the given four options indicated against each of the Exercises from 35 to 50 (M.C.Q)

35. $\sin x + i \cos 2x$ and $\cos x - i \sin 2x$ are conjugate to each other for:

(A) $x = n\pi$ 1 $\left(n+\frac{1}{2}\right)\frac{\pi}{2}$ (C) $x = 0$ (D) No value of *x* **36.** The real value of α for which the expression $\frac{1-\sin \theta}{\cos \theta}$ $1+2i\sin$ $-i\sin\alpha$ $+2i\sin\alpha$ $\frac{i \sin \alpha}{2i \sin \alpha}$ is purely real is : (A) $(n+1)$ 2 π $(n+1)\frac{\pi}{2}$ (B) $(2n+1)\frac{\pi}{2}$ (C) $n\pi$ (D) None of these, where $n \in \mathbb{N}$ **37.** If $z = x + iy$ lies in the third quadrant, then $\frac{\overline{z}}{z}$ also lies in the third quadrant if (A) $x > y > 0$ (B) $x < y < 0$ (C) $y < x < 0$ (D) $y > x > 0$ **38.** The value of $(z + 3)(\overline{z} + 3)$ is equivalent to (A) $|z+3|^2$ (B) $|z-3|$ (C) $z^2 + 3$ (D) None of these **39.** If $\left(\frac{1}{1}\right)$ $\left(\frac{1+i}{1-i}\right)^{x}$ $\left(\frac{i}{i}\right)$ = 1, then (A) $x = 2n+1$ (B) $x = 4n$ (C) $x = 2n$ (D) $x = 4n + 1$, where $n \in \mathbb{N}$

Downloaded From :<http://cbseportal.com/>

96 EXEMPLAR PROBLEMS – MATHEMATICS

40. A real value of *x* satisfies the equation $\left(\frac{3-4}{2}\right)$ $\left(\frac{3-4ix}{3+4ix}\right) = \alpha - i\beta \quad (\alpha, \beta \in \mathbf{R})$ if $\alpha^2 + \beta^2 =$ (A) 1 (B) – 1 (C) 2 (D) – 2 **41.** Which of the following is correct for any two complex numbers z_1 and z_2 ? (A) $|z_1z_2| = |z_1||z_2|$ z_2) = arg (z_1). arg (z_2) (C) $|z_1 + z_2| = |z_1| + |z_2|$ (D) $|z_1 + z_2| \ge |z_1| - |z_2|$ **42.** The point represented by the complex number $2 - i$ is rotated about origin through an angle $\frac{\pi}{2}$ π in the clockwise direction, the new position of point is: (A) $1+2i$ (B) $-1-2i$ (C) $2+i$ (D) $-1+2i$ **43.** Let $x, y \in \mathbf{R}$, then $x + iy$ is a non real complex number if: (A) $x = 0$ (B) $y = 0$ (C) $x \neq 0$ (D) $y \neq 0$ **44.** If $a + ib = c + id$, then (A) $a^2 + c^2 = 0$ (B) b^2 (B) $b^2 + c^2 = 0$ (C) $b^2 + d^2 = 0$ $+ d^2 = 0$ (D) $a^2 + b^2 = c^2 + d^2$ **45.** The complex number *z* which satisfies the condition $\left| \frac{i+z}{i-z} \right| = 1$ $i - z$ lies on (A) circle $x^2 + y^2$ (B) the *x*-axis (C) the *y*-axis (D) the line $x + y = 1$. **46.** If *z* is a complex number, then (A) $|z^2|>|z|^2$ $|z^2| > |z|^2$ (B) $|z^2| = |z|^2$ (C) $|z^2| < |z|^2$ (D) $|z^2| \ge |z|^2$ **47.** $|z_1 + z_2| = |z_1| + |z_2|$ is possible if (A) $z_2 = \overline{z_1}$ = 1 1 *z* (C) arg $(z_1) = \arg(z_2)$ (D) $|z_1| = |z_2|$

48. The real value of θ for which the expression $\frac{1+i\cos\theta}{\cos\theta}$ $1 - 2i \cos$ *i i* + i cos θ $-2i\cos\theta$ is a real number is:

(A)
$$
n\pi + \frac{\pi}{4}
$$
 (B) $n\pi + (-1)^n \frac{\pi}{4}$

(C)
$$
2n\pi \pm \frac{\pi}{2}
$$
 (D) none of these.

49. The value of arg (x) when $x < 0$ is:

- (A) 0 π 2
- (C) π (D) none of these

50. If
$$
f(z) = \frac{7-z}{1-z^2}
$$
, where $z = 1 + 2i$, then $|f(z)|$ is
\n(A) $\frac{|z|}{2}$ (B) $|z|$
\n(C) $2|z|$ (D) none of these.

