
Chapter Ten WAVE OPTICS

MCQ I

10.1 Consider a light beam incident from air to a glass slab at Brewster's angle as shown in Fig. 10.1.

A polaroid is placed in the path of the emergent ray at point P and rotated about an axis passing through the centre and perpendicular to the plane of the polaroid.

- (a) For a particular orientation there shall be darkness as observed through the polaoid.
- (b) The intensity of light as seen through the polaroid shall be independent of the rotation.
- (c) The intensity of light as seen through the Polaroid shall go through a minimum but not zero for two orientations of the polaroid.
- (d) The intensity of light as seen through the polaroid shall go through a minimum for four orientations of the polaroid.
- **10.2** Consider sunlight incident on a slit of width 10⁴ A. The image seen through the slit shall

Wave Optics

- (a) be a fine sharp slit white in colour at the center.
- (b) a bright slit white at the center diffusing to zero intensities at the edges.
- (c) a bright slit white at the center diffusing to regions of different colours.
- (d) only be a diffused slit white in colour.
- **10.3** Consider a ray of light incident from air onto a slab of glass (refractive index *n*) of width *d*, at an angle θ . The phase difference between the ray reflected by the top surface of the glass and the bottom surface is

(a)
$$\frac{4\pi d}{\lambda} \left(1 - \frac{1}{n^2} \sin^2 \theta\right)^{1/2} + \pi$$

(b) $\frac{4\pi d}{\lambda} \left(1 - \frac{1}{n^2} \sin^2 \theta\right)^{1/2}$
(c) $\frac{4\pi d}{\lambda} \left(1 - \frac{1}{n^2} \sin^2 \theta\right)^{1/2} + \frac{\pi}{2}$

(d)
$$\frac{4\pi d}{\lambda} \left(1 - \frac{1}{n^2} \sin^2 \theta\right)^{1/2} + 2\pi$$

- **10.4** In a Young's double slit experiment, the source is white light. One of the holes is covered by a red filter and another by a blue filter. In this case
 - (a) there shall be alternate interference patterns of red and blue.
 - (b) there shall be an interference pattern for red distinct from that for blue.
 - (c) there shall be no interference fringes.
 - (d) there shall be an interference pattern for red mixing with one for blue.
- **10.5** Figure 10.2 shows a standard two slit arrangement with slits S_1 , S_2 . P_1 , P_2 are the two minima points on either side of P (Fig. 10.2).

At $\rm P_2$ on the screen, there is a hole and behind $\rm P_2$ is a second 2- slit arrangement with slits $\rm S_3,~S_4$ and a second screen behind them.

- (a) There would be no interference pattern on the second screen but it would be lighted.
- (b) The second screen would be totally dark.

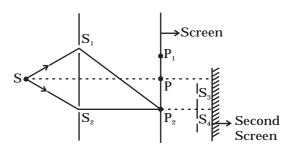


Fig. 10.2

Exemplar Problems–Physics

x

- (c) There would be a single bright point on the second screen.
- (d) There would be a regular two slit pattern on the second screen.

MCQ II

10.6 Two source S_1 and S_2 of intensity I_1 and I_2 are placed in front of a screen [Fig. 10.3 (a)]. The patteren of intensity distribution seen in the central portion is given by Fig. 10.3 (b).

In this case which of the following statements are true.

- (a) S_1 and S_2 have the same intensities.
- (b) S_1 and S_2 have a constant phase difference.
- (c) S_1 and S_2 have the same phase.
- (d) S_1 and S_2 have the same wavelength.
- **10.7** Consider sunlight incident on a pinhole of width 10³A. The image of the pinhole seen on a screen shall be
 - (a) a sharp white ring.
 - (b) different from a geometrical image.
 - (c) a diffused central spot, white in colour.
 - (d) diffused coloured region around a sharp central white spot.
- **10.8** Consider the diffraction patern for a small pinhole. As the size of the hole is increased
 - (a) the size decreases.
 - (b) the intensity increases.
 - (c) the size increases.
 - (d) the intensity decreases.
- **10.9** For light diverging from a point source
 - (a) the wavefront is spherical.
 - (b) the intensity decreases in proportion to the distance squared.
 - (c) the wavefront is parabolic.
 - (d) the intensity at the wavefront does not depend on the distance.

VSA

- **10.10** Is Huygen's principle valid for longitudunal sound waves?
- **10.11** Consider a point at the focal point of a convergent lens. Another convergent lens of short focal length is placed on the other side. What is the nature of the wavefronts emerging from the final image?
- **10.12** What is the shape of the wavefront on earth for sunlight?

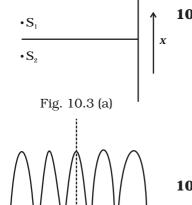
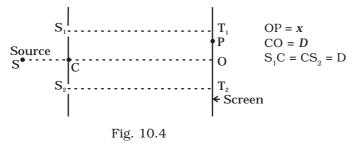


Fig. 10.3 (b)


Downloaded From :http://cbseportal.com/

Wave Optics

- **10.13** Why is the diffraction of sound waves more evident in daily experience than that of light wave?
- **10.14** The human eye has an approximate angular resolution of $\phi = 5.8 \times 10^{-4}$ rad and a typical photoprinter prints a minimum of 300 dpi (dots per inch, 1 inch = 2.54 cm). At what minimal distance z should a printed page be held so that one does not see the individual dots.
- **10.15** A polariod (I) is placed in front of a monochromatic source. Another polatiod (II) is placed in front of this polaroid (I) and rotated till no light passes. A third polaroid (III) is now placed in between (I) and (II). In this case, will light emerge from (II). Explain.

SA

- **10.16** Can reflection result in plane polarised light if the light is incident on the interface from the side with higher refractive index?
- **10.17** For the same objective, find the ratio of the least separation between two points to be distinguished by a microscope for light of 5000 Å and electrons accelerated through 100V used as the illuminating substance.
- **10.18** Consider a two slit interference arrangements (Fig. 10.4) such that the distance of the screen from the slits is half the distance between the slits. Obtain the value of *D* in terms of λ such that the first minima on the screen falls at a distance *D* from the centre O.

LA

10.19 Figure 10.5 shown a two slit arrangement with a source which emits unpolarised light. P is a polariser with axis whose direction is not given. If I_0 is the intensity of the principal maxima when *no* polariser is present, calculate in the present case, the intensity of the principal maxima as well as of the first minima.

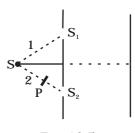


Fig. 10.5

65

Exemplar Problems–Physics

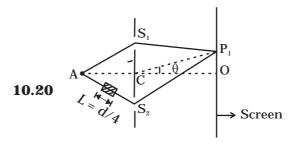


Fig. 10.6

 $AC = CO = D, S_1C = S_2C = d \ll D$

A small transparent slab containing material of μ = 1.5 is placed along AS $_{\!_2}$ (Fig.10.6). What will be the distance from O of the principal maxima and of the first minima on either side of the principal maxima obtained in the absence of the glass slab. .

- **10.21** Four identical monochromatic sources A,B,C,D as shown in the (Fig. 10.7) produce waves of the same wavelength λ and are coherent. Two receiver R_1 and R_2 are at great but equal distaces from B.
 - (i) Which of the two receivers picks up the larger signal?
 - (ii) Which of the two receivers picks up the larger signal when B is turned off?
 - (iii) Which of the two receivers picks up the larger signal when D is turned off?
 - (iv) Which of the two receivers can distinguish which of the sources B or D has been turned off?

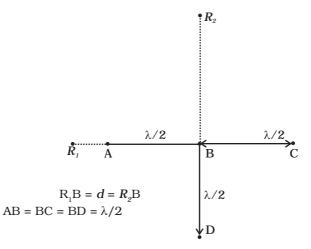


Fig. 10.7

66

Downloaded From :http://cbseportal.com/

Wave Optics

- **10.22** The optical properties of a medium are governed by the relative permitivity (ε_r) and relative permeability (μ_r). The refractive index is defined as $\sqrt{\mu_r \varepsilon_r} = n$. For ordinary material $\varepsilon_r > 0$ and $\mu_r > 0$ and the positive sign is taken for the square root. In 1964, a Russian scientist V. Veselago postulated the existence of material with $\varepsilon_r < 0$ and $\mu_r < 0$. Since then such 'metamaterials' have been produced in the laboratories and their optical properties studied. For such materials $n = -\sqrt{\mu_r \varepsilon_r}$. As light enters a medium of such refractive index the phases travel away from the direction of propagation.
 - (i) According to the description above show that if rays of light enter such a medium from air (refractive index = 1) at an angle θ in 2nd quadrant, them the refracted beam is in the 3rd quadrant.
 - (ii) Prove that Snell's law holds for such a medium.
- **10.23** To ensure almost 100 per cent transmittivity, photographic lenses are often coated with a thin layer of dielectric material. The refractive index of this material is intermediated between that of air and glass (which makes the optical element of the lens). A typically used dielectric film is MgF₂ (n = 1.38). What should the thickness of the film be so that at the center of the visible speetrum (5500 Å) there is maximum transmission.