Test Booklet Code

DEF

No.:

This Booklet contains 20 pages.

Do not open this Test Booklet until you are asked to do so.

Important Instructions:

- 1. The Answer Sheet is inside this Test Booklet. When you are directed to open the Test Booklet, take out the Answer Sheet and fill in the particulars on side-1 and side-2 carefully with blue/black ball point pen only.
- 2. The test is of 3 hours duration and Test Booklet contains 180 questions. Each question carries 4 marks. For each correct response, the candidate will get 4 marks. For each incorrect response, one mark will be deducted from the total scores. The maximum marks are 720.
- Use Blue/Black Ball Point Pen only for writing particulars on this page/marking responses.
- 4. Rough work is to be done on the space provided for this purpose in the Test Booklet only.
- 5. On completion of the test, the candidate must handover the Answer Sheet to the invigilator before leaving the Room/Hall. The candidates are allowed to take away this Test Booklet with them.
- 6. The CODE for this Booklet is **P**. Make sure that the CODE printed on **Side-2** of the Answer Sheet is the same as that on this Booklet. In case of discrepancy, the candidate should immediately report the matter to the Invigilator for replacement of both the Test Booklet and the Answer Sheet.
- 7. The candidates should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet. Do not write your roll no. anywhere else except in the specified space in the Test Booklet/Answer Sheet.
- Use of white fluid for correction is NOT permissible on the Answer Sheet.
- Each candidate must show on demand his/her Admission Card to the Invigilator.
- 10. No candidate, without special permission of the Superintendent or Invigilator, would leave his/her seat.
- 11. The candidates should not leave the Examination Hall without handing over their Answer Sheet to the Invigilator on duty and sign the Attendance Sheet twice. Cases where a candidate has not signed the Attendance Sheet second time will be deemed not to have handed over Answer Sheet and dealt with as an unfair means case.
- 12. Use of Electronic/Manual Calculator is prohibited.
- 13. The candidates are governed by all Rules and Regulations of the Board with regard to their conduct in the Examination Hall. All cases of unfair means will be dealt with as per Rules and Regulations of the Board.
- 14. No part of the Test Booklet and Answer Sheet shall be detached under any circumstances.
- 15. The candidates will write the Correct Test Booklet Code as given in the Test Booklet Answer Sheet in the NEET Downloaded a Respect in the NEET

If force (F), velocity (V) and time (T) are taken as fundamental units, then the dimensions of mass are:

- (1) $[F V T^{-1}]$ $H L^{\frac{1}{2}}$
- (2) $[F V T^{-2}]$ (MC) (T^{-1})
- (4) $[F V^{-1} T]$ MVT^{-2} MT^{-1}

A projectile is fired from the surface of the earth with a velocity of 5 ms $^{-1}$ and angle θ with the horizontal. Another projectile fired from another planet with a velocity of 3 ms $^{-1}$ at the same angle follows a trajectory which is identical with the trajectory of the projectile fired from the earth. The value of the acceleration due to gravity on the planet is (in ms $^{-2}$) is: (given g = 9.8 ms $^{-2}$)

(1) 3.5

2/

- (2) 5.9
- (3) 16.3
- (4) 110.8
- 3. A particle is moving such that its position coordinates (x, y) are

(2m, 3m) at time t = 0,

(6m, 7m) at time t=2s and

 $\sqrt{(13m, 14m)}$ at time t = 5 s.

Average velocity vector $\begin{pmatrix} \overrightarrow{V}_{av} \end{pmatrix}$ from t = 0 to t = 5 s is:

 $\frac{1}{5} \left(13\hat{i} + 14\hat{j} \right)$

- (2) $\frac{7}{3}(\hat{i}+\hat{j})$ A+36+16
- $(3) \qquad 2\left(\hat{i}+\hat{j}\right)$
- $(4) \qquad \frac{11}{5} \left(\hat{i} + \hat{j} \right)$

A system consists of three masses m₁, m₂ and m₃ connected by a string passing over a pulley P. The mass m₁ hangs freely and m₂ and m₃ are on a rough horizontal table (the coefficient of friction = μ). The pulley is frictionless and of negligible mass. The downward acceleration of mass m₁ is: (Assume m₁ = m₂ = m₃ = m)

- $(1) \qquad \frac{g(1-g\mu)}{9}$
- $(2) \qquad \frac{2g\mu}{3}$
- $\frac{g(1-2\mu)}{3}$
 - $(4) \qquad \frac{g(1-2\mu)}{2}$
- 5. The force 'F' acting on a particle of mass 'm' is indicated by the force-time graph shown below. The change in momentum of the particle over the time interval from zero to 8 s is:

- (1) 24 Ns
- (2) 20 Ns
- (2) 12 Ns
- (4) 6 Ns
- 6. A balloon with mass 'm' is descending *down* with an acceleration 'a' (where a < g). How much mass should be removed from it so that it starts moving *up* with an acceleration 'a'?
 - $(1) \qquad \frac{2 \text{ ma}}{\text{g + a}}$
 - $(2) \qquad \frac{2 \text{ ma}}{g a}$
 - $\frac{ma}{g+a}$
 - (4) $\frac{ma}{g-a}$

- A body of mass (4m) is lying in x-y plane at rest. It 7. suddenly explodes into three pieces. Two pieces, each of mass (m) move perpendicular to each other with equal speeds (v). The total kinetic energy generated due to explosion is:
 - mv^2 (1)

- $2 \text{ m} v^2$ (3)
- $4 \text{ m}v^2$ (4)
- The oscillation of a body on a smooth horizontal 8. surface is represented by the equation,

$$X = A \cos(\omega t)$$

$$X = \text{displacement at time } t$$

$$\omega$$
 = frequency of oscillation

Which one of the following graphs shows correctly the variation 'a' with 't'?

Here a = acceleration at time t

T = time period

A solid cylinder of mass 50 kg and radius 0.5 m is free to rotate about the horizontal axis. A massless string is wound round the cylinder with one end attached to it and other hanging freely. Tension in the string required to produce an angular acceleration of 2 revolutions s^{-2} is:

- (1)25 N
- (2)50 N
- (3)78.5 N
- (4)157 N

- Ţo. The ratio of the acclerations for a solid sphere (mass 'm' and radius 'R') folling down an incline of angle '8' without slipping and slipping down the incline without rolling is
 - 5:7 (1)
 - 2:3 (2)
 - (3)2:5
 - 7:5 (4)
- 11. A black hole is an object whose gravitational field is so strong that even light cannot escape from it. To what approximate radius would earth (mass = 5.98×10^{24} kg) have to be compressed to be a black hole?
 - ÆS $10^{-9} \, \text{m}$
 - $10^{-6} \, \text{m}$
 - $10^{-2} \, \text{m}$ (3)
 - (4) 100 m
- 12. Dependence of intensity of gravitational field (E) of earth with distance (r) from centre of earth is correctly represented by:

- (3.) Copper of fixed volume 'V' is drawn into wire of length 'l'. When this wire is subjected to a constant force 'F', the extension produced in the wire is ' $\Delta l'$. Which of the following graphs is a straight line?
 - (1) Δl versus 1/l
 - Δl versus l^2
 - Δl versus $1/l^2$
 - Δl versus l

Į

14. A certain number of spherical drops of a liquid of radius 'r' coalesce to form a single drop of radius 'R' and volume 'V'. If 'T' is the surface tension of

the liquid, then :

energy = $4VT\left(\frac{1}{r} - \frac{1}{R}\right)$ is released.

energy = $3VT\left(\frac{1}{r} + \frac{1}{R}\right)$ is absorbed.

- (3) energy = $3VT\left(\frac{1}{r} \frac{1}{R}\right)$ is released.
- (4) energy is neither released nor absorbed.

Steam at 100°C is passed into 20 g of water at 10°C. When water acquires a temperature of 80°C, the mass of water present will be:

[Take specific heat of water = $1 \text{ cal } g^{-1} \, {}^{\circ}\text{C}^{-1}$ and latent heat of steam = $540 \, \text{cal } g^{-1}$]

- (1) 24 g
- (2) 31.5 g
- (3) 42.5 g
- (4) 22.5 g

Certain quantity of water cools from 70°C to 60°C in the first 5 minutes and to 54°C in the next 5 minutes. The temperature of the surroundings is:

- (1) 45°C
- # 10° c -> 5~
- (2) 20°C (3) 42°C
- 4 8°C 5 5mm
- (4) 10°C

A monoatomic gas at a pressure P, having a volume V expands isothermally to a volume 2V and then adiabatically to a volume 16V. The final pressure of the gas is: (take γ = 5/3)

- (1) 64P
- (1) AV = V
- (2) 32P (3) P/64
- (4) 16P

18. A thermodynamic system undergoes cyclic process ABCDA as shown in Fig. The work done by the system in the cycle is:

- A 13 P - 1 Po to 3 Po V - > Vo to 2 Vo
- $(1) \qquad P_0 V_0$
- $(2) \qquad 2P_0 \; V_0$
- $(3) \qquad \frac{P_0 \ V_0}{2}$
- D=A-Po2Vo to Vo
- $V = 2V_0 \text{ to } V_0$ c D

19. The mean free path of molecules of a gas, (radius is inversely proportional to:

- (1) r^3
- (2) r^2
- (3) r

(4) VI

20. If n_1 , n_2 and n_3 are the fundamental frequencies three segments into which a string is divided, the original fundamental frequency n of the string given by:

$$\frac{1}{n} = \frac{1}{n_1} + \frac{1}{n_2} + \frac{1}{n_3}$$

(2)
$$\frac{1}{\sqrt{n}} = \frac{1}{\sqrt{n_1}} + \frac{1}{\sqrt{n_2}} + \frac{1}{\sqrt{n_3}}$$

(3)
$$\sqrt{n} = \sqrt{n_1} + \sqrt{n_2} + \sqrt{n_3}$$

$$(4) n = n_1 + n_2 + n_3$$

The number of possible natural oscillations of column in a pipe closed at one end of length 85 α whose frequencies lie below 1250 Hz are: (veloc of sound = 340 ms⁻¹)

- (1) 4
- (2) 5
- (3) 7
- (4)

A speeding motorcyclist sees traffic jam ahead him. He slows down to 36 km/hour. He finds th traffic has eased and a car moving ahead of him 18 km/hour is honking at a frequency of 1392 Hz. the speed of sound is 343 m/s, the frequency of t honk as heard by him will be:

- (1) 1332 Hz
- (2) 1372 Hz
- (3) 1412 Hz
- (4) 1454 Hz

23. Two thin dielectric slabs of dielectric constants K_1 and K_2 ($K_1 \le K_2$) are inserted between plates of a parallel plate capacitor, as shown in the figure. The variation of electric field 'E' between the plates with distance 'd' as measured from plate P is correctly shown by:

24. A conducting sphere of radius R is given a charge Q. The electric potential and the electric field at the centre of the sphere respectively are:

(1) Zero and
$$\frac{Q}{4 \pi \epsilon_0 R^2}$$

$$\frac{Q}{4 \pi \varepsilon_0 \; R} \; \text{and Zero}$$

(3)
$$\frac{Q}{4 \pi \epsilon_0 R}$$
 and $\frac{Q}{4 \pi \epsilon_0 R^2}$

In a region, the potential is represented by . 25. V(x, y, z) = 6x - 8xy - 8y + 6yz, where V is in volts and x, y, z are in meters. The electric force experienced by a charge of 2 coulomb situated at point (1, 1, 1) is:

- (1) $6\sqrt{5}$ N
- (2)30 N
- 6-1 11t (3)

(4) $4\sqrt{35}$ N 26. Two cities are 150 km apart. Electric power is sent from one city to another city through copper wires. The fall of potential per km is 8 volt and the average resistance per km is $0.5\,\Omega$. The power loss in the wire is:

- (1)19.2 W
- $_{0}(2)$ 19.2 kW
 - (3)19.2 J
 - (4)12.2 kW

The resistances in the two arms of the meter bridge are 5 Ω and R Ω , respectively. When the resistance R is shunted with an equal resistance, the new balance point is at $1.6 l_1$. The resistance 'R', is:

- (1) 10Ω
- (2) 15Ω
- (3) 20Ω
- 25Ω

28. A potentiometer circuit has been set up for finding the internal resistance of a given cell. The main battery, used across the potentiometer wire, has an emf of 2.0 V and a negligible internal resistance. The potentiometer wire itself is 4 m long. When the resistance, R, connected across the given cell, has values of.

- (i) infinity
- (ii) 9.5Ω ,

the 'balancing lengths', on the potentiometer wire are found to be 3 m and 2.85 m, respectively.

The value of internal resistance of the cell is:

- (1) 0.25Ω
- (2) 0.95Ω
- (3) 0.5Ω
- (4) 0.75Ω

29. Following figures show the arrangement of bar magnets in different configurations. Each magnet has magnetic dipole moment m. Which configuration has highest net magnetic dipole moment?

30. In an ammeter 0.2% of main current passes through the galvanometer. If resistance of galvanometer is G, the resistance of ammeter will be:

31. Two identical long conducting wires AOB and COD are placed at right angle to each other, with one above other such that 'O' is their common point for the two. The wires carry I₁ and I₂ currents, respectively. Point 'P' is lying at distance 'd' from 'O' along a direction perpendicular to the plane containing the wires. The magnetic field at the point 'P' will be:

(1)
$$\frac{\mu_{o}}{2\pi d} \begin{pmatrix} I_{1}/I_{2} \end{pmatrix}$$

(2) $\frac{\mu_{o}}{2\pi d} (I_{1} + I_{2})$
(3) $\frac{\mu_{o}}{2\pi d} (I_{1}^{2} - I_{2}^{2})$
(4) $\frac{\mu_{o}}{2\pi d} (I_{1}^{2} + I_{2}^{2})^{\frac{1}{2}}$

A thin semicircular conducting ring (PQR) of radius 'r' is falling with its plane vertical in a horizontal magnetic field B, as shown in figure. The potential difference developed across the ring when its speed is v, is:

(1) Zero

(33)

(2) $Bv\pi r^2/2$ and P is at higher potential

(3) πrBv and R is at higher potential

(4) 2rBv and R is at higher potential

A transformer having efficiency of 90% is working on 200 V and 3 kW power supply. If the current in the secondary coil is 6 A, the voltage across the secondary coil and the current in the primary coil respectively are:

(1) 300 V, 15 A

(2) 450 V, 15 A

(3) 450 V, 13.5 A

(4) 600 V, 15 A

Light with an energy flux of 25×10^4 Wm⁻² falls on a perfectly reflecting surface at normal incidence. If the surface area is 15 cm², the average force exerted on the surface is:

(1) $1.25 \times 10^{-6} \text{ N}$

(2) $2.50 \times 10^{-6} \text{ N}$

(3) $1.20 \times 10^{-6} \text{ N}$

(4) $3.0 \times 10^{-6} \text{ N}$

35. A beam of light of $\lambda = 600$ nm from a distant source falls on a single slit 1 mm wide and the resulting diffraction pattern is observed on a screen 2 m away. The distance between first dark fringes on either side of the central bright fringe is:

(I) 1.2 cm

0.100

(3) 2.4 cm

1.2 mm

(2)

هی پرو

(4) 2.4 mm

36. In the Young's double-slit experiment, the intensity of light at a point on the screen where the path difference is λ is K, (λ being the wave length of light used). The intensity at a point where the path difference is $\lambda/4$, will be:

(1) K

(2) K/4

(3) K/2

(4) Zero

- 37. If the focal length of objective lens is increased then magnifying power of:
 - microscope will increase but that of telescope **(1)** decrease.
 - microscope and telescope both will increase. (2)
 - microscope and telescope both will (3)
 - microscope will decrease but that of telescope (4)will increase.
- The angle of a prism is 'A'. One of its refracting 38. surfaces is silvered. Light rays falling at an angle of incidence 2A on the first surface returns back through the same path after suffering reflection at the silvered surface. The refractive index μ , of the prism is:
 - 2 sin A
 - 2 cos A
 - $\frac{1}{2}\cos A$
 - (4)tan A
- When the energy of the incident radiation is 39. increased by 20%, the kinetic energy of the photoelectrons emitted from a metal surface increased from 0.5 eV to 0.8 eV. The work function of the metal is:
 - (1)0.65 eV
 - (2)1.0 eV
 - 1.3 eV
 - (4)1.5 eV
- 40. If the kinetic energy of the particle is increased to 16 times its previous value, the percentage change in the de-Broglie wavelength of the particle is:
 - (1)
 - 75 (2)
 - (3)60
 - (4) 50
- Hydrogen atom in ground state is excited by 41. a monochromatic radiation of $\lambda = 975 \text{ Å}$. Number of spectral lines in the resulting spectrum emitted will be:

 - 6
 - 10
- The Binding energy per nucleon of ${}_3^7\text{Li}$ and ${}_2^4\text{He}$ nuclei are 5.60 MeV and 7.06 MeV, respectively. In the nuclear reaction ${}^7_3\text{Li} + {}^1_1\text{H} \rightarrow {}^4_2\text{He} + {}^4_2\text{He} + Q$ the value of energy Q released is:
 - (1) 19.6 MeV
 - (2)-2.4 MeV
 - (3) 8.4 MeV
 - (4)17.3 MeV

- 43. A radio isotope 'X' with a half life 1.4×10^9 years decays to 'Y' which is stable. A sample of the rock from a cave was found to contain 'X' and 'Y' in the ratio 1:7. The age of the rock is:
- $1.96 \times 10^9 \text{ years}$ $3.92 \times 10^9 \text{ years}$
 - 4.20×10^9 years
 - $8.40 \times 10^9 \, \text{years}$
- The given graph represents V-I characteristic for a semiconductor device.

Which of the following statement is correct?

- It is V I characteristic for solar cell where, point A represents open circuit voltage and point B short circuit current.
- (2)It is for a solar cell and points A and B represent open circuit voltage and current, respectively.
- $(3)^{-1}$ It is for a photodiode and points A and B represent open circuit voltage and current, respectively.
- It is for a LED and points A and B represent (4) open circuit voltage and short circuit current, respectively.
- The barrier potential of a p-n junction depends on: 45.
 - type of semi conductor material (a)
 - (b) amount of doping
 - (c) temperature

Which one of the following is correct?

- (a) and (b) only
- (2)(b) only
- (3)(b) and (c) only
- (4) (a), (b) and (c)
- What is the maximum number of orbitals that can 46. be identified with the following quantum numbers?
 - $n=3, l=1, m_l=0$

ownload	led From http://cbseportal.o	com/	H2 + 1U, >
	A The same of the		22.4 11/2
P	32400	8	
47.	Calculate the energy in joule corresponding to light of wavelength 45 nm: (Planck's constant $h=6.63\times10^{-34}$ Js; speed of light $c=3\times10^8$ ms ⁻¹)	53.	When 22.4 litres of $H_2(g)$ is mixed with 11.2 litres of $Cl_2(g)$, each at S.T.P., the moles of $HCl(g)$ formed is equal to: 1 mal of $HCl(g)$
	$(1) \qquad 6.67 \times 10^{15}$	1	(1) 1 mol of HCI (g)
	$(2) \qquad 6.67 \times 10^{11}$	1	(2) 2 mol of HCl (g) (3) 0.5 mol of HCl (g)
	(3) 4.42×10^{-15}	1	(3) 0.5 mol of HCl (g) (4) 1.5 mol of HCl (g)
	(4) 4.42×10 ⁻¹⁸		(x) 1.5 moror rea (g)
	(x) 1.12 × 10	54.	When 0.1 mol MnO_4^{2-} is oxidised the quantity of
(148)	Equal masses of H_2 , O_2 and methane have been	1	electricity required to completely oxidise MnO ₄ ²⁻
	taken in a container of volume V at temperature 27°C		to MnO ₄ is:
مرد ومند	in identical conditions. The ratio of the volumes of		(1) 96500 C
	gases $H_2: O_2$: methane would be: (1) 8:16:1 $H_2 \longrightarrow 3.01 \times 10^{13}$	1	(2) 2×96500 C
į is			(3) 9650 C
	$(2) 16:8:1 \qquad 0 \qquad \longrightarrow$	ļ	(4) 96.50 C
	(3) 16:1:2		
	(4) 8:1:2	55,	Using the Gibbs energy change, $\Delta G^{\circ} = +63.3$ kJ, for the following reaction,
49.	If a is the length of the side of a cube, the distance		$Ag_2CO_3(s) \rightleftharpoons 2Ag^+(aq) + CO_3^{2-}(aq)$
ı	between the body centered atom and one corner atom in the cube will be:		the K _{sp} of Ag ₂ CO ₃ (s) in water at 25°C is:
	2 (2) + (3) - (2) + 20		$(R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1})$
1			(1) 3.2×10^{-26}
7.6	$(1) \qquad \frac{1}{\sqrt{3}} a \qquad \qquad \sqrt{3} a$		(2) 8.0×10^{-12}
133	4		$\begin{array}{ccc} (2) & 6.0 \times 10 \\ (3) & 2.9 \times 10^{-3} \end{array}$
	$(2) \frac{4}{\sqrt{3}} \text{ a}$		
		}	$(4) 7.9 \times 10^{-2}$
	$(3) \frac{\sqrt{3}}{4} \text{ a}$	56.	The weight of silver (at.wt. = 108) displaced by a quantity of electricity which displaces 5600 mL of O_2 at STP will be:
	$\frac{\sqrt{3}}{2}$ a	Ç.	(1) $5.4 \mathrm{g}$ (2) $10.8 \mathrm{g}$
50.	Which property of colloids is not dependent on the charge on colloidal particles?		(4) 108.0 g
	(1) Coagulation >		VATING A TO CALL OF THE CONTROL OF THE CALL OF THE CAL
	(2) Electrophoresis >	37.	Which of the following statements is correct for the spontaneous adsorption of a gas? (1) ΔS is negative and, therefore, ΔH should be
	(3) Electro - osmosis >	کر	(1) ΔS is negative and, therefore, ΔH should be
	Tyndall effect	10"	highly positive.
51.	Which of the following salts will give highest pH in		ΔS is negative and therefore, ΔH should be highly negative.
	water?		(3) ΔS is positive and, therefore, ΔH should be
	(1) KCI HCI		negative.
	(2) NaCI HU		(4) ΔS is positive and, therefore, ΔH should also
i I	(2) Na2CO3 17CO3		be highly positive.
i	(4) $CuSO_4$ m_2SO_4	58.	For the reversible reaction :
i		30.	
52.	Of the following 0.10 m aqueous solutions, which		$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g) + heat$ The equilibrium shifts in forward direction:
<u> </u>	one will exhibit the largest freezing point		(1) by increasing the concentration of $NH_3(g)$
<u>.</u>	depression?		(2) by decreasing the pressure
	(1) KCl		(3) by decreasing the pressure (3) by decreasing the concentrations of $N_2(g)$ and
: •	(2) $C_6H_{12}O_6$		H ₂ (g)
	$(3) \qquad Al_2(SO_4)_3$] .	by increasing pressure and decreasing
	(4) K2SO4		temperature
л <u>б</u>	•	, , K	ty P2VL

 $\Delta U = 2.1 \text{ k cal}$, $\Delta S = 20 \text{ cal K}^{-1} \text{ at } 300 \text{ K}$

Hence, ΔG is:

- (1)2.7 k cal
- (2)-2.7 k cal
- •(3) 9.3 k cal
- (4)-9.3 k cal
- For a given exothermic reaction , K_p and $K_p^{'}$ are the equilibrium constants at temperatures T_1 and T_2 , respectively. Assuming that heat of reaction is constant in temperature range between T_1 and T_2 , it is readily observed that:
 - $K_{D} > K_{D}'$
 - (2) $K_{p} < K_{p}'$
 - $(3) K_{p} = K_{p}'$
 - $_{4}$ (4) $K_{p} = \frac{1}{K_{p}'}$
- 61. Which of the following orders of ionic radii is correctly represented?
 - H⁻>H⁺>H Na⁺>F⁻>O²-F⁻>O²->Na⁺

 - $Al^{3+} > Mg^{2+} > N^{3-}$
- 1.0 g of magnesium is burnt with 0.56 g $\rm O_2$ in a closed vessel. Which reactant is left in excess and how much?

 - (At. wt. Mg = 24; O = 16)
 - Mg, 0.16g O_2 , 0.16 g
 - Mg, 0.44 g (3)
 - O_2 , 0.28 g
 - The pair of compounds that can exist together is:
 - FeCl₃, SnCl₂
 - (2)
 - HgCl₂ SnCl₂ FeCl₂ SnCl₂
 - FeCl₃ KI
- 64.2 Be^{2+} is isoelectronic with which of the following
 - H^+ (1)
 - Li+
 - Na+
- Which of the following molecules has the maximum dipole moment?
 - (1) CO₂
 - (2)CH₄
 - (3)NH₃
 - (4) NF_3

- 66. Which one of the following species has plane triangular shape?

 - NO₃0 .: C .: O: N NO₂
 - - CO₂
- Acidity of diprotic acids in aqueous solutions increases in the order:
 - (1) $H_2S < H_2Se < H_2Te$
 - (2) $H_2Se < H_2S < H_2Te$
 - H₂Te < H₂S < H₂Se
 - $H_2Se < H_2Te < H_2Se$
- 68. (a) $H_2O_2 + O_3 \rightarrow H_2O + 2O_2$
 - $H_2O_2 + Ag_2O \rightarrow 2Ag + H_2O + O_2$ (b)

Role of hydrogen peroxide in the above reactions is respectively:

- (1)oxidizing in (a) and reducing in (b)
- (2) reducing in (a) and oxidizing in(b)
- reducing in (a) and (b)
- oxidizing in (a) and (b)
- 69. Artificial sweetner which is stable under cold conditions only is:
 - Saccharine (1)
 - (2)Sucralose
 - (3)Aspartame
 - (4)Alitame
- In acidic medium, H_2O_2 changes $Cr_2O_7^{-2}$ to CrO_5 which has two (-O-O-) bonds. Oxidation state of Cr in CrO_5 is:
 - (1)
 - (2)+3

 - The reaction of aqueous $KMnO_4$ with H_2O_2 in acidic conditions gives : KHU0 4 + +120, ->
 - Mn^{4+} and O_2 (1)
 - Mn^{2+} and O_2^2 (2)
 - Mn^{2+} and O_3 (3)
 - Mn⁴⁺ and MnO₂
 - Among the following complexes the one which shows Zero crystal field stabilization energy (CFSE)
 - (1) $[Mn(H_2O)_6]^{3+}$
 - (2) $[Fe(H_2O)_6]^{3+}$
 - (3) $[Co(H_2O)_6]^{2+}$
 - (4) $[Co(H_2O)_6]^{3+}$

Magnetic moment 2.83 BM is given by which of the following ions?

(At. nos. Ti = 22, Cr = 24, Mn = 25, Ni = 28)

- (1) Ti³⁺ -> \ 9
- (2) Ni2+ -> 26
- (3) Cr3+ -121
- $(4) \quad Mn^{2+} \longrightarrow 2^{3}$

74. Which of the following complexes is used to be as an anticancer agent?

- (1) mer $[Co(NH_3)_3 Cl_3]$
- (2) cis [Pt Cl_2 (NH₃)₂]
- (3) $\operatorname{cis} K_2[\operatorname{Pt} \operatorname{Cl}_2 \operatorname{Br}_2]$
- (4) Na₂CoCl₄

75. Reason of lanthanoid contraction is:

Negligible screening effect of 'f' orbitals

- (2) Increasing nuclear charge
- (3) Decreasing nuclear charge
- (4) Decreasing screening effect

76. In the following reaction, the product (A)

$$\begin{array}{cccc}
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & &$$

$$N = N - NH - O$$

$$(2) \qquad \langle \bigcirc \rangle - N = N - \langle \bigcirc \rangle$$

$$(3) \qquad \bigcirc N = N - \bigcirc N = N$$

$$(4) \qquad \langle \bigcirc \rangle - N = N - \langle \bigcirc \rangle - NH_2$$

77. Which of the following will be most stable diazonium salt RN 2 X ?

- (1) $CH_3 N_2^+ X^-$
- (2) $C_6H_5 N_2^+ X^-$
- (3) $CH_3 CH_2 N_2^+ X^-$
- (4) $C_6H_5 CH_2 N_2^+ X^-$

78. D(+) glucose reacts with hydroxyl amine and yields an oxime. The structure of the oxime would be:

$$\begin{array}{c} CH = NOH \\ H - C - OH \\ HO - C - H \\ HO - C - H \\ HO - C - H \\ - C - OH \\ CH_2OH \end{array}$$

79. Which of the following hormones is produced under the condition of stress which stimulate: glycogenolysis in the liver of human beings?

- (1) Thyroxin
- (2) Insulin

Adrenaline

(4) Estradiol

$$+CH_2-C=CH-CH_2+_n$$

(2)
$$+CH_2-CH_{\stackrel{1}{\longrightarrow}n}$$

(3)
$$+ N - (CH_2)_6 - N - C - (CH_2)_4 - C + n$$

$$(4) \qquad \begin{array}{c} OH & OH \\ CH_2 & CH_2 \end{array}$$

Which of the following organic compounds polymerizes to form the polyester Dacron?

- (1) Propylene and para $HO (C_6H_4) OH$
- (2) Benzoic acid and ethanol
- (3) Terephthalic acid and ethylene glycol
- (4) Benzoic acid and para $HO (C_6H_4) OH$

Which one of the following is **not** a common component of Photochemical Smog?

- (1) Ozone
- -(2) Acrolein
- (3) Peroxyacetyl nitrate
- (4) Chlorofluorocarbons

In the Kjeldahl's method for estimation of nitrogen present in a soil sample, ammonia evolved from $0.75~\rm g$ of sample neutralized $10~\rm mL$ of $1M~\rm H_2SO_4$. The percentage of nitrogen in the soil is:

- (1) 37.33
- (2) 45.33
- (3) 35.33
- (4) 43.33

What products are formed when the following compound is treated with Br₂ in the presence of FeBr₃?

11

(1)
$$CH_3$$
 Br and CH_3 CH_3 CH_3

$$(4) \qquad \bigcup_{Br}^{CH_3} \qquad \text{and} \qquad \bigcup_{CH_3}^{CH_3}$$

Which of the following compounds will undergo racemisation when solution of KOH hydrolyses?

85.

- (ii) CH₃CH₂CH₂Cl
- (iii) H₃C CH CH₂Cl

- (1) (i) and (ii)
- (2) (ii) and (iv)
- (3) (iii) and (iv)
- (4) (i) and (iv)

Among the following sets of reactants which one produces anisole?

- (1) CH₃CHO; RMgX
- (2) C_6H_5OH ; NaOH; CH_3I
- (3) C_6H_5OH ; neutral FeCl₃
- (4) $C_6H_5 CH_3$; CH_3COCl ; $AlCl_3$

87. Which of the following will not be soluble in sodium hydrogen carbonate?

- (1) 2, 4, 6 - trinitrophenol
- (2)Benzoic acid
- o Nitrophenol **4**(3)
- (4)Benzenesulphonic acid

88. Which one is most reactive towards Nucleophilic addition reaction?

Identity Z in the sequence of reactions:

 $CH_3CH_2CH=CH_2 \xrightarrow{HBr/H_2O_2} Y \xrightarrow{C_2H_5ONa} Z$

- CH3-(CH2)3-O-CH2CH3
- $(CH_3)_2CH_2-O-CH_2CH_3$ (2)
- (3) $CH_{3}(CH_{2})_{4} - O - CH_{3}$
- $CH_3CH_2 CH(CH_3) O CH_2CH_3$

Which of the following organic compounds has same hybridization as its combustion product-(CO₂)?

- (1)
- Ethane C2 H6
 Ethyne
- Ethene
- (4)Ethanol

91. Which one of the following shows isogamy with non-flagellated gametes?

- (1) Sargassum
- (2)Ectocarpus
- **Ulothrix**
 - (4) Spirogyra

92. Five kingdom system of classification suggested by R.H. Whittaker is not based on:

- (1) Presence or absence of a well defined nucleus.
- L2Y Mode of reproduction.
- (3) Mode of nutrition.
- (4) Complexity of body organisatoin.

93. Which one of the following fungi contains hallucinogens?

- **•** (1) Morchella esculenta
 - Amanita muscaria (2)
 - (3)Neurospora sp.
 - (4)Ustilago sp.

94. Archaebacteria differ from eubacteria in :

- (1) Cell membrane structure
- (2) Mode of nutrition
- (3)Cell shape
- (4) Mode of reproduction

Green als

(95) Which one of the following is wrong about Chara?

- Upper oogonium and lower round antheridium.
 - (2)Globule and nucule present on the same plant.
- (3) Upper antheridium and lower oogonium
- (4) Globule is male reproductive structure

96. Which of the following is responsible for peat formation?

- (1)Marchantia
- (2)Riccia
- (3)Funaria
- Sphagnum

97. Placenta and pericarp are both edible portions in:

- Apple
- Banana
- Tomato Potato

98. When the margins of sepals or petals overlap one another without any particular direction, the condition is termed as:

- (1) Vexillary
- **Imbricate** (2)
- (3)**Twisted**
- (4) Valvate

99. You are given a fairly old piece of dicot stem and a dicot root. Which of the following anatomical structures will you use to distinguish between the two?

- (1) Secondary xylem
- (2) Secondary phloem
- (3) Protoxylem
- (4) Cortical cells

- 100. Which one of the following statements is **correct**?
 - (1)The seed in grasses is not endospermic.
 - (2)Mango is a parthenocarpic fruit.
 - 13) A proteinaceous aleurone layer is present in maize grain.
 - (4)A sterile pistil is called a staminode.
- Tracheids differ from other tracheary elements in:
 - **(1)** having casparian strips
 - (2) being imperforate
 - (3) lacking nucleus
 - (4) being lignified
- 102. An example of edible underground stem is:
 - (1) Carrot
 - (2)Groundnut
 - (3)Sweet potato
 - (4) Potato
- Which structures perform the function of mitochondria in bacteria?
 - (1)Nucleoid
 - (2)Ribosomes
 - (3)Cell wall
 - 4 Mesosomes
- 104. The solid linear cytoskeletal elements having a diameter of 6 nm and made up of a single type of monomer are known as:
 - (1)Microtubules
 - (2)Microfilaments
 - (3)Intermediate filaments
 - **(4)** Lamins
- The osmotic expansion of a cell kept in water is chiefly regulated by:
 - (1)Mitochondria
 - Vacuoles
 - (3)**Plastids**
 - (4)Ribosomes
- During which phase(s) of cell cycle, amount of DNA in a cell remains at 4C level if the initial amount is denoted as 2C?
 - (1) G_0 and G_1
 - (2) G₁ and S
 - Only G₂
 - G₂ and M

- 107. Match the following and select the correct answer:
 - (a) Centriole
- (i) Infoldings in mitochondria
- (b) Chlorophyll (ii) Thylakoids
- Cristae i
- (iii) Nucléic acids
- (d) Ribozymes (b)
- (iv) Basal body cilia or flagella
- (a)
- (c) (d)
- (1) (iv) (ii) (i)
- (2)(i)
- (ii)
- (iv) (iii)
- (3)(i)
- (iii)
- (ii) (iv) €
- (4)(iv)
- (iii)
- (ii) 🕥

(iii)

108. Dr. F. Went noted that if coleoptile tips were removed and placed on agar for one hour, the agar would produce a bending when placed on one side of freshly-cut coleoptile stumps. Of what significance is this experiment?

(i)

- It made possible the isolation and exact identification of auxin.
- _(2)_ It is the basis for quantitative determination of small amounts of growth-promoting substances.
 - (3) It supports the hypothesis that IAA is auxin.
 - (4)It demonstrated polar movement of auxins.
- 109. Deficiency symptoms of nitrogen and potassium are visible first in:
 - H Senescent leaves
 - (2)Young leaves
 - (3)Roots
 - (4)Buds
- 110. In which one of the following processes CO2 is not released?
 - (1)Aerobic respiration in plants
 - (2)Aerobic respiration in animals
 - (3)Alcoholic fermentation
 - Lactate fermentation
- 111 Anoxygenic photosynthesis is characteristic of :
 - -(1)Rhodospirillum
 - (2)Spirogyra
 - (3)Chlamydomonas
 - (4)Ulva

bownloaded From :http://cbseportal.com/ 14 P 118. Function of filiform apparatus is to: A few normal seedlings of tomato were kept in a 112. dark room. After a few days they were found to have (1) Recognize the suitable pollen at stigma become white-coloured like albinos. Which of the Stimulate division of generative cell (2)following terms will you use to describe them? (3) Produce nectar Mutated (1)Guide the entry of pollen tube (4) **Embolised** (2)**Etiolated** Non-albuminous seed is produced in: Defoliated (4)Maize (1) (2) Castor 113. Which one of the following growth regulators is (3)Wheat known as 'stress hormone'? Pea 141 Abscissic acid (1)(2)Ethylene 120. Which of the following shows coiled RNA strand (3) GA_3 and capsomeres? (4)Indole acetic acid (1) Polio virus Tobacco mosaic virus 114. Geitonogamy involves: (3) Measles virus 41 fertilization of a flower by the pollen from (4)Retrovirus another flower of the same plant. fertilization of a flower by the pollen from the (2)121. Which one of the following is **wrongly** matched? same flower. (1) Transcription - Writing information from (3)fertilization of a flower by the pollen from a DNA to t-RNA. flower of another plant in the same (2)Translation - Using information in m-RNA population. to make protein. (4)fertilization of a flower by the pollen from a Repressor protein - Binds to operator to stop flower of another plant belonging to a distant enzyme synthesis. population. (4) Operon - Structural genes, operator and promoter. Male gametophyte with least number of cells is present in: 122. Transformation was discovered by: **4**(1) Pteris (1) Meselson and Stahl Funaria (2)(2)Hershey and Chase (3)Lilium Griffith Pinus (4)Watson and Crick (4) An aggregate fruit is one which develops from: Fruit colour in squash is an example of: (1) Multicarpellary syncarpous gynoecium (1)Recessive epistasis (2) Multicarpellary apocarpus gynoecium (2)Dominant epistasis (3) Complete inflorescence (3)Complementary genes (4)Multicarpellary superior ovary Inhibitory genes 117. Pollen tablets are available in the market for: **124.** Viruses have: (1)In vitro fertilization 45 DNA enclosed in a protein coat (2)Breeding programmes (2) Prokaryotic nucleus Supplementing food (3) Single chromosome (3)Ex situ conservation Both DNA and RNA (4)

ν11 Τ (Jaue	ed Flom : nccp://cosepolca
		1
125.		first human hormone produced by recombinant A technology is:
	-(1)	Insulin
	(2)	Estrogen
	(3)	_
	(4)	Progesterone
126.		analysis of chromosomal DNA using the thern hybridization technique does not use:
	(1)	Electrophoresis
	(2)	Blotting
	_(3)	Autoradiography
	(4)	PCR
127	In vi by:	tro clonal propagation in plants is characterized
	(1)	PCR and RAPD
	(2)	Northern blotting
	(3)	Electrophoresis and HPLC
	(4)	Microscopy
128.	An a bein	lga which can be employed as food for human g is :
	(1)	Ulothrix
ray.	(2)	Chlorella
	(3)	⁻ Spirogyra
	(4)	Polysiphonia
129.	Which DNA	ch vector can clone only a small fragment of
	(1)	Bacterial artificial chromosome
	(2)	Yeast artificial chromosome
	43)	Plasmid
	(4)	Cosmid
130.	An e	xample of ex situ conservation is :
ح	(1)	National Park
	_(2)	Seed Bank
	(3)	Wildlife Sanctuary
	(4)	Sacred Grove

A location with luxuriant growth of lichens on the

trees indicates that the:

(1)(2)

(3)

trees are very healthy

trees are heavily infested location is highly polluted

location is not polluted

132.	Mate	ch the following and select the correct option:				
	(a)	Earth	Earthworm n		(i)	Pioneer species
	(b)	Succ	ession		(ii)	Detritivore
l	(c)	Ecos	ystem	service	e (iii)	Natality
	(d)	Popu	llation	growt	h (iv)	Pollination
		(a)	(b)	(c)	(d)	
	(1)	(i)	(ii)	(iii)	(iv)	
	(2)	(iv)	(i)	(iii)	(ii)	
	(3)	(iii)	(ii)	(iv)	(i)	
	(4)	(ii)	(i)	(iv)	(iii)	
133.		ecies fa mmedi				risk of extinction in
	(1)	Vuln	erable			
	(2)	Ende	mic			•
	(3)	Critic	ally E	ndange	ered	
•	(4)	Extin	ct			
134.		zone of ent is ca		phere i	in whic	h the ozone layer is
	(1)	Ionos	phere			
	(2)	Meso	sphere	9		
	18)	Strato	spher	e		
	(4)	Tropo	spher	e		
135.		organiz es is :	ation	which	publis	hes the Red List of
	(1)	ICFRI	3			
	, (2)	IUCN	Г			
	(3)	UNEI	•			
	(4)	WWF				
136.		t the Tane				at represents both
	(1)	Echin	oderm	us y		
	(2)	Cteno	phora	P		
	(3)	Cepha		rdata		
	-(4)	Cnida	ria			
137.		th one oletely <i>l</i>				living organisms
	(1)	Cyano				
	_ (2)			rgonia))	
	(3)	Saccha	•			
	(4)	Blue -	green	algae		

Downloaded From : http://cbseportal.com/

P	16
138. Planaria possess high capacity of:	145. Which one of the following is a non - reducing carbohydrate?
(1) metamorphosis	(1) Maltose
regeneration	(2) Sucrose
(3) alternation of generation	
(4) bioluminescence	(3) Lactose (4) Ribose 5 - phosphate
and the same single sin	
139. A marine cartilaginous fish that can produce <u>electri</u> current is:	The clay he seemen
	of meiosis:
(1) Pristis _(2) Torpedo	(1) Pachytene
(3) Trygon	(2) Zygotene
(4) Scoliodon	(3) Diplotene
(4) Scottonon	•(4) Diakinesis
140. Choose the correctly matched pair:	147. The initial step in the digestion of milk in humans is
(1) Tendon - Specialized connective tissue &	carried out by?
(2) Adipose tissue - Dense connective tissue	(1) Lipase
Areolar tissue - Loose connective tissue	(2) Trypsin
(4) Cartilage - Loose connective tissue	· Rennin
and Classification and the matched pair:	(4) Pepsin
Choose the correctly matched pair: (1) Inner lining of salivary ducts - Ciliate	148. Fructose is absorbed into the blood through mucosa
(1) Inner lining of salivary ducts - Chare epithelium	148. Fructose is absorbed into the blood through mucosa cells of intestine by the process called:
(2) Moist surface of buccal cavity - Glandul	
epithelium	facilitated transport
Tubular parts of nephrons - Cuboid	al (3) simple diffusion
epithelium	(4) co-transport mechanism
(4) Inner surface of bronchioles - squamor	us
epithelium	149. Approximately seventy percent of carbon-dioxide
142. In 'S' phase of the cell cycle:	absorbed by the blood will be transported to the
4-27. 1 13 1111	lungs : (1) as bicarbonate ions
4-24	
	(2) in the form of dissolved gas molecules (3) by binding to R.B.C
(4) amount of DNA is reduced to hair in ea	
	150. Person with blood group AB is considered as
143. The motile bacteria are able to move by:	universal recipient because he has:
(1) fimbriae	both A and B antigens on RBC but no
(2) flagella	antibodies in the plasma. (2) both A and B antibodies in the plasma.
(3) cilia	nng 1 antibody in the
(4) pili	(3) no antigen on RBC and no antibody in the plasma.
144. Select the option which is not correct with respec	
144. Select the option which is not correct with respec	antihodies

151. How do parasympathetic neural signals affect the

Reduce both heart rate and cardiac output.

Heart rate is increased without affecting the

Both heart rate and cardiac output increase.

Heart rate decreases but cardiac output

working of the heart?

increases.

cardiac output.

A1)

(2)

(3)

(4)

Substrate binds with enzyme at its active site.

Addition of lot of succinate does not reverse

the inhibition of succinic dehydrogenase by

A non - competitive inhibitor binds the

enzyme at a site distinct from that which

Malonate is a competitive inhibitor of succinic

(1)

(Z)

(3)

(4)

malonate.

binds the substrate.

dehydrogenase.

- **152.** Which of the following causes an increase in sodium reabsorption in the distal convoluted tubule?
 - (1) Increase in aldosterone levels
 - 2) Increase in antidiuretic hormone levels
 - (3) Decrease in aldosterone levels
 - (4) Decrease in antidiuretic hormone levels
- **153.** Select the correct matching of the type of the joint with the example in human skeletal system:

	Type of joint	Example
المكير	Cartilaginous joint -	between frontal and pariental
(2)	Pivot joint -	between third and fourth cervical vertebrae
(3)	Hinge joint -	between humerus and pectoral girdle

between carpals

- **154.** Stimulation of a muscle fiber by a motor neuron occurs at:
 - (1) the neuromuscular junction
 - (2) the transverse tubules

Gliding joint

(3) the myofibril

(4)

- (4) the sacroplasmic reticulum
- 155. Injury localized to the hypothalamus would most likely disrupt:
 - (1) short term memory.
 - (2) co-ordination during locomotion.
 - (3) executive functions, such as decision making.
 - (4) regulation of body temperature.
- 156.) Which one of the following statements is not correct?
 - (1) Retinal is the light absorbing portion of visual photo pigments.
 - (2) In retina the rods have the photopigment rhodopsin while cones have three different photopigments.
 - (3) Retinal is a derivative of Vitamin C.
 - (4) Rhodopsin is the purplish red protein present in rods only.
 - 7. Identify the hormone with its correct matching of source and function:
 - Oxytocin posterior pituitary, growth and maintenance of mammary glands.
 - (2) Melatonin pineal gland, regulates the normal rhythm of sleepwake cycle.
 - (3) Progesterone corpus-luteum, stimulation of growth and activities of female secondary sex organs.
 - (4) Atrial natriuretic factor ventricular wall increases the blood pressure.

- 158. Fight-or-flight reactions cause activation of:
 - the parathyroid glands, leading to increased metabolic rate.
 - (2) the kidney, leading to suppression of reninangiotensin-aldosterone pathway.
 - (3) the adrenal medulla, leading to increased secretion of epinephrine and norepinephrene.
 - (4) the pancreas leading to a reduction in the blood sugar levels.
- 159. The <u>shared terminal duct</u> of the reproductive and urinary system in the human male is:
 - (1) Urethra
 - (2) Ureter
 - (3) Vas deferens
 - (4) Vasa efferentia
- **160.** The main function of mammalian <u>corpus luteum</u> is to produce:
 - (1) estrogen only
 - (2) progesterone
 - (3) human chorionic gonadotropin
 - (4) relaxin only
- **161.** Select the <u>correct option</u> describing gonadotropin activity in a normal pregnant female:
 - (1) High level of FSH and LH stimulates the thickening of endometrium.
 - (2) High level of FSH and LH facilitate implantation of the embryo.
 - High level of hCG stimulates the synthesis of estrogen and progesterone.
 - (4) High level of hCG stimulates the thickening of endometrium.
- **162.** Tubectomy is a method of sterilization in which:
 - small part of the fallopian tube is removed or tied up.
 - (2) ovaries are removed surgically.
 - (3) small part of vas deferens is removed or tied up.
 - (4) uterus is removed surgically
- Which of the following is a hormone releasing Intra Uterine Device (IUD)?
 - (1) Multiload 375
 - (2) LNG 20
 - (3) Cervical cap
 - (4) Vault

Assisted reproductive technology, IVF involves transfer of:

- (H) Ovum into the fallopian tube.
- (2) Zygote into the fallopian tube. ≻
- (3) Zygote into the uterus.
- (4) Embryo with 16 blastomeres into the fallopian
- 165. A man whose father was colour blind marries a woman who had a colour blind mother and normal father. What percentage of male children of this couple will be colour blind?

- (1) 25%
- (2) 0%
- (3) 50%
 - (4) 75%
- 166. In a population of 1000 individuals 360 belong to genotype AA, 480 to Aa and the remaining 160 to aa. Based on this data, the frequency of allele A in the population is:
 - (1) 0.4
 - (2) 0.5
 - (3) 0.6
 - (4) 0.7
- 167. A human female with Turner's syndrome:
 - (1) has 45 chromosomes with XO.
 - (2) has one additional X chromosome.
 - exhibits male characters.
 - (4) is able to produce children with normal husband.

168.

Select the correct option:

	/	
	Direction of	Direction of reading
	RNA synthesis	of the template DNA
		strand
(1)	5'3'	3' 5'
(2)	3' 5'	5′ — 3′
(3)	5'3'	5' 3'
(4)	3'-5'	3′ 5′

- 169. Commonly used vectors for human genome sequencing are:
 - (1) T-DNA
 - (2) BAC and YAC
 - (3) Expression Vectors
 - (4) T/A Cloning Vectors

- 170. Forelimbs of cat, lizard used in walking; forelimbs of whale used in swimming and forelimbs of bats used in flying are an example of:
 - (1) Analogous organs
 - (2) Adaptive radiation
 - (3) Homologous organs
 - (4) Convergent evolution
- 171. Which one of the following are analogous structures?
 - (1) Wings of Bat and Wings of Pigeon.
 - (2) Gills of Prawn and Lungs of Man.
 - (3) Thorns of Bougainvillea and Tendrils of Cucurbita
 - Flippers of Dolphin and Legs of Horse.
- Which is the particular type of drug that is obtained from the plant whose one flowering branch is shown below?

- (1) Hallucinogen
- (2) Depressant
- (3) Stimulant
- (4) Pain killer
- 173. At which stage of HIV infection does one usually show symptoms of AIDS?
 - (1) Within 15 days of sexual contact with an infected person.
 - (2) When the infected retro virus enters host cells.
 - (3) When HIV damages large number of helper T Lymphocytes.
 - When the viral DNA is produced by reverse transcriptase.
- 174. To obtain virus free healthy plants from a diseased one by tissue culture technique, which part/parts of the diseased plant will be taken?
 - Apical meristem only
 - (2) Palisade parenchyma
 - (3) Both apical and axillary meristems
 - (4) Epidermis only

- 175. What gases are produced in an<u>aerobic sludge</u> 178. digesters?
 - (1) Methane and CO₂ only

(2) Methane, Hydrogen Sulphide and CO₂

- (3) Methane, Hydrogen Sulphide and O_2
- (4) Hydrogen Sulphide and CO₂
- 176. Just as a person moving from Delhi to Shimla to escape the heat for the duration of hot summer, thousands of migratory birds from Siberia and other extremely cold northern regions move to:
 - (1) Western Ghat
 - (2) Meghalaya
 - (3) Corbett National Park

(4) Keolado National Park

Given below is a simplified model of phosphorus cycling in a terrestrial ecosystem with four blanks (A-D). Identify the blanks.

Options:

_	A	В	С	D
(1)	Rock minerals	Detritus	Litter fall	Producers
(2)	Litter fall	Producers	Rock minerals	Detritus
(3)	Detritus	Rock minerals	Producer	Litter fall
(4)	Producers	Litter fall	Rock minerals	Detritus

178. Given below is the representation of the extent of global diversity of *invertebrates*. What groups the four portions (A-D) represent respectively?

Options:

	A	В	C	D
(1)	Insects	Crustaceans	Other animal groups	Molluscs
(2)	Crustaceans	Insects	Molluscs	Other animal groups
(3)	Molluscs	Other animal groups	Crustaceans	Insects
(4)	Insects	Molluscs	Crustaceans	Other animal groups

- A scrubber in the exhaust of a chemical industrial plant removes:
 - (1) gases like sulphur dioxide
 - (2) particulate matter of the size 5 micrometer or above
 - (3) gases like ozone and methane
 - (4) particulate matter of the size 2.5 micrometer or less

