
INMO 2021

Official Solutions

Problem 1. Suppose r ≥ 2 is an integer, and let m1, n1,m2, n2, · · · ,mr, nr be 2r integers
such that

|minj −mjni| = 1

for any two integers i and j satisfying 1 ≤ i < j ≤ r. Determine the maximum possible
value of r.

Solution. Let m1, n1,m2, n2 be integers satisfying m1n2 − m2n1 = ±1. By changing the
signs of m2, n2 if need be, we may assume that

m1n2 −m2n1 = 1.

If m3, n3 are integers satisfying m1n3 − m3n1 = ±1, again we may assume (by changing
their signs if necessary) that

m1n3 −m3n1 = 1.

So m1(n2 − n3) = n1(m2 −m3).
As m1, n1 are relatively prime, m1 divides m2 −m3; say, m2 −m3 = m1a for some integer

a. Thus, we get n2 − n3 = n1a. In other words,

m3 = m2 −m1a , n3 = n2 − n1a.

Now, if m2n3 − n2m3 = ±1, we get

±1 = m2(n2 − n1a)− n2(m2 −m1a) = (m1n2 −m2n1)a = a.

Thus, m3 = m2 −m1a = m2 ±m1, n3 = n2 − n1a = n2 ± n1.
Now if we were to have another pair of integers m4, n4 such that

m1n4 − n1m4 = ±1,

we may assume that m1n4−n1m4 = 1. As seen above, m4 = m2∓m1, n4 = n2∓n1. But then

m3n4 − n3m4 = (m2 ±m1)(n2 ∓ n1)− (n2 ± n1)(m2 ∓m1) = ±2.

Therefore, there can be only 3 pairs of such integers.
That there do exist many sets of 3 pairs is easy to see; for instance, (1, 0), (1, 1) ,(0, 1)

is such a triple.

Alternate Solution. It is clear that r can be 3 due to the valid solution m1 = 1, n1 =
1,m2 = 1, n2 = 2,m3 = 2, n3 = 3.
If possible, let r > 3. We observe that:

m1n2n3 −m2n1n3 = ±n3
m2n3n1 −m3n2n1 = ±n1
m3n1n2 −m1n3n2 = ±n2

Adding, we get ±n1 ± n2 ± n3 = 0; which forces at least one of n1, n2, n3 to be even; WLOG
let n1 be even.

Repeating the argument for indices 2, 3, 4, we deduce that at least one of n2, n3, n4 is
even; WLOG let n2 be even. This leads to a contradiction, since |m1n2 −m2n1| = 1 cannot
be even. Hence r > 3 is not possible, as claimed.

Problem 2. Find all pairs of integers (a, b) so that each of the two cubic polynomials

x3 + ax+ b and x3 + bx+ a

has all the roots to be integers.
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Solution. The only such pair is (0, 0), which clearly works. To prove this is the only one,
let us prove an auxiliary result first.

Lemma If α, β, γ are reals so that α+ β + γ = 0 and |α|, |β|, |γ| ≥ 2, then

|αβ + βγ + γα| < |αβγ|.

Proof. Some two of these reals have the same sign; WLOG, suppose αβ > 0. Then γ =
−(α+ β), so by substituting this,

|αβ + βγ + γα| = |α2 + β2 + αβ|, |αβγ| = |αβ(α+ β)|.

So we simply need to show |αβ(α+ β)| > |α2 + β2 + αβ|. Since |α| ≥ 2 and |β| ≥ 2, we have

|αβ(α+ β)| =|α||β(α+ β)| ≥ 2|β(α+ β)|,
|αβ(α+ β)| =|β||α(α+ β)| ≥ 2|α(α+ β)|.

Adding these and using triangle inequality,

2|αβ(α+ β)| ≥ 2|β(α+ β)|+ 2|α(α+ β)| ≥ 2|β(α+ β) + α(α+ β)|
≥ 2(α2 + β2 + 2αβ) > 2(α2 + β2 + αβ)

= 2|α2 + β2 + αβ|.

Here we have used the fact that α2 + β2 +2αβ = (α+ β)2 and α2 + β2 +αβ =
(
α+ β

2

)2

+ 3β2

4

are both nonnegative. This proves our claim.

For our main problem, suppose the roots of x3+ax+ b are the integers r1, r2, r3 and the
roots of x3 + bx+ a are the integers s1, s2, s3. By Vieta’s relations, we have

r1 + r2 + r3 = 0 = s1 + s2 + s3
r1r2 + r2r3 + r3r1 = a = −s1s2s3
s1s2 + s2s3 + s3s1 = b = −r1r2r3

If all six of these roots had an absolute value of at least 2, by our lemma, we would have

|b| = |s1s2 + s2s3 + s3s1| < |s1s2s3| = |r1r2 + r2r3 + r3r1| < |r1r2r3| = |b|,

which is absurd. Thus at least one of them is in the set {0, 1,−1}; WLOG, suppose it’s r1.

1. If r1 = 0, then r2 = −r3, so b = 0. Then the roots of x3 + bx + a = x3 + a are precisely
the cube roots of −a, and these are all real only for a = 0. Thus (a, b) = (0, 0), which
is a solution.

2. If r1 = ±1, then ±1 ± a + b = 0, so a and b can’t both be even. If a = −s1s2s3 is odd,
then s1, s2, s3 are all odd, so s1 + s2 + s3 cannot be zero. Similarly, if b is odd, we get
a contradiction.

The proof is now complete.

Alternate Solution. The only such pair is (0, 0), which clearly works. Let us prove this
is the only one. In what follows, we use ν2(n) to denote the largest integer k so that 2k|n
for any non-zero n ∈ Z.

If one of the cubics has 0 as a root, say the first one, then 03 + 0 · a + b = 0, so b = 0.
Then the roots of x3 + bx+ a = x3 + a are precisely the cube roots of −a, and these are all
real only for a = 0. Thus (a, b) = (0, 0).

So suppose none of the roots are zero. Take the cubic x3+ax+b, and suppose its roots
are x, y, z. We cannot have ν2(x) = ν2(y) = ν2(z); indeed, if we had x = 2kx1, y = 2ky1, z =
2kz1 for odd x1, y1, z1, then

0 = x+ y + z = 2k(x1 + y1 + z1).

But x1 + y1 + z1 is odd, and hence non-zero, so this cannot happen.
Thus we can assume WLOG that ν2(x) > ν2(y). Then the third root is −(x+y). Similarly,

the three roots of x3 + bx+ a can be written as p, q,−(p+ q) where ν2(p) > ν2(q). By Vieta’s
relations,

xy − x(x+ y)− y(x+ y) = −(x2 + xy + y2) = a = pq(p+ q)
pq − p(p+ q)− q(p+ q) = −(p2 + pq + q2) = b = xy(x+ y)
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Suppose x = 2kx1 and y = 2`y1 for odd x1, y1 and k > `; in particular k > 0. Then

xy(x+ y) = 2kx1 · 2`y1 · (2kx1 + 2`y1) = 2k+2`x1y1(2
k−`x1 + y1).

Here x1y1(2k−`x1 + y1) is clearly odd, so ν2(xy(x+ y)) = k + 2`.
Also,

x2 + xy + y2 = 22kx21 + 2kx1 · 2`y1 + 22`y21 = 22`
(
22k−2`x21 + 2k−`x1y1 + y21

)
.

Again, all the terms in the second factor are even except y21, so the entire factor is odd.
This means ν2(x2 + xy + y2) = 2`. Therefore

ν2(xy(x+ y)) > ν2(x
2 + xy + y2).

Similarly, one may show
ν2(pq(p+ q)) > ν2(p

2 + pq + q2).

But then

ν2(b) = ν2(xy(x+ y)) > ν2(x
2 + xy + y2) = ν2(pq(p+ q)) > ν2(p

2 + pq + q2) = ν2(b).

Here we have used the fact that ν2(n) = ν2(−n) for any integer n. But this is a contradic-
tion, proving our claim.

Problem 3. Betal marks 2021 points on the plane such that no three are collinear, and
draws all possible line segments joining these. He then chooses any 1011 of these line
segments, and marks their midpoints. Finally, he chooses a line segment whose mid-
point is not marked yet, and challenges Vikram to construct its midpoint using only a
straightedge. Can Vikram always complete this challenge?

Note: A straightedge is an infinitely long ruler without markings, which can only be
used to draw the line joining any two given distinct points.

Solution. The answer is ‘yes’. To prove this, we will first prove two lemmas:

Lemma 1 Given any two points A,B, their midpoint M , and any point C, Vikram can
draw a line parallel to AB through C.

Proof. If C is on line AB we are already done. If not, extend BC to X as shown, draw
P = AC ∩ XM , and then draw D = BP ∩ AX. We claim CD is the desired line. Indeed,
using Ceva’s theorem on triangle ABX and the fact AM =MB, we see that

AM

MB
· BC
CX

· XD
DA

= 1 =⇒ XC

CB
=
XD

DA
.

This means CD ‖ AB.

A M B

C

X

D

P

A

M

B

N

C

X

P

Y

Q

Lemma 1 Lemma 2
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Lemma 2 Given two non-parallel segments AB,BC and their midpoints M,N , Vikram
can draw the midpoint of any other segment XY .

Proof. Assume first XY is not parallel to AB or BC. Using lemma 1, draw lines `1 and `2
through X parallel to AB and BC respectively, and similarly draw m1 and m2 through Y
parallel to AB and BC respectively. If we draw P = `1 ∩m2 and Q = `2 ∩m1, then XPY Q
is a parallelogram, so intersecting PQ and XY gives the midpoint of XY .

As for the remaining case, one can draw AC and construct the midpoint P of AC by
the construction described above. Since XY can be parallel to at most one of the sides
AB,BC and AC, we can pick the two non-parallel sides, and use the above construction
to draw the midpoint of XY .

Now for the main problem, note that if no two of the 1011 chosen segments share an
endpoint, then we have at least 2 · 1011 = 2022 distinct endpoints, a contradiction. Thus
there must be two segments AB and BC which have their midpoints marked. Since no
three of the chosen 2021 points were collinear, AB and BC are not parallel, so using
lemma 2, Vikram can construct the midpoint of any other segment, in particular, the
segment chosen by Betal.

Alternate Solution As in the previous solution, note that there exist AB and AC whose
midpoints C ′ and B′ are marked. Using the straightedge, Vikram can draw the two medi-
ans AC ′ and AB′ and obtain their intersection, the centroid G of 4ABC. Now intersecting
AG with BC gives A′, the midpoint of BC.

Lemma Given a point P not on AB,AC, Vikram can draw the midpoint of PA.

Proof. If PB||AC and PC||AB, then PBAC is a parallelogram, in which case A′ constructed
above is the midpoint of PA. Without loss of generality, we may assume PB ∦ AC.

A

C ′

B A′ C

P ′

P

D

D′

Q′

Using the straightedge, one can mark the points D = PB ∩ AC and PB ∩ A′C ′ = D′.
Since CA||A′C ′, we have

BD′

D′D
=
BC ′

C ′A
= 1,

so D′ is the midpoint of BD. Now in 4ABD, two midpoints C ′ and D′ are known, so the
midpoint of Q′ of AD can be constructed using the centroid construction outlined before.
Let P ′ = C ′Q′ ∩ PA; this exists as C ′Q′||BP ∦ AP . As before, C ′P ′||BP , so

AP ′

P ′P
=
AC ′

C ′B
= 1,

which means P ′ is the desired midpoint of PA.

Now suppose we need to find the midpoint of PQ. If P,Q are different points from A,
then one can draw the midpoints of AP and AQ using the lemma. Then by using the
centroid of 4APQ, one can find the midpoint of PQ as we did for BC. If P or Q is A, the
above lemma immediately yields the required midpoint.
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Problem 4 A Magician and a Detective play a game. The Magician lays down cards
numbered from 1 to 52 face-down on a table. On each move, the Detective can point
to two cards and inquire if the numbers on them are consecutive. The Magician replies
truthfully. After a finite number of moves the Detective points to two cards. She wins if
the numbers on these two cards are consecutive, and loses otherwise.

Prove that the Detective can guarantee a win if and only if she is allowed to ask at
least 50 questions.

Solution. Strategy for the Detective: Pick a card A and compare against all others except
one. If he ever gets a “Yes", that pair works; else the remaining card is consecutive with
A. This process takes at most 50 queries.

Strategy for the Magician: We show that it is not always possible to obtain a “Yes" in 50
turns, hence showing that 49 turns are not enough to figure out a consecutive pair. It is
enough to conjure a labelling of cards for which denying all 50 inquiries is valid.

Replace 52 by any N > 3. Think of the cards as vertices of a complete graph KN . Delete
all edges joining vertices which correspond to pairs of cards the Detective inquired about.
We will show that deleting any N − 2 edges of KN still leaves a graph that admits a path
containing all the vertices. Labelling all cards along this path as 1 to N would finish.
Several proofs of this claim are possible. We present three of them.

Proof 1.
For any two vertices a and b, since deg a+ deg b ≥ 2(N − 1)− (N − 2) = N , they share a

common neighbour. Hence the graph is connected.
Pick the longest path P : u = u0 → u1 → · · · → uk = v. All neighbours of u and v

must remain within the path, else we could get a longer path. Let u have x neighbours
{ui1 , ui2 , . . . , uix} with 1 = i1 < i2 < · · · < ix ≤ k. Let v have y neighbours {uj1 , . . . , ujy}. Since
x+ y ≥ n, we see that is = jr + 1 for some r and s. Thus there exists i such that u → ui+1

and ui → v are edges. Thus the path is a cycle

C = ui+1 → u0 → u1 · · · → ui → v → uk−1 · · · → ui+1.

Suppose a vertex w is not in the path P. By connectedness, we have a path P ′ from w to
some vertex of P. Continue along this path via the cycle C to obtain a path longer than P;
contradiction! Thus the graph has a path of length N − 1, as desired.

Proof 2.
Pick the longest cycle C = v1 → · · · → vk → v1. Note that any vertex w not in the cycle

can be incident to no more than k
2 of the vertices in it; else there exists i such that wvi

and wvi+1 (indices mod k) are edges, so we can put w in to get a longer cycle. Thus our
graph is missing at least 1

2k(N − k) edges. So 2(N − 2) ≥ k(N − k). Clearly k > 2 so we see
that k ∈ {N − 2, N − 1}.

Case 1. k = N − 1. Pick the leftover w outside C. Not all edges from w to the cycle are
missing (since only N − 2 are missing in total), so follow an edge from w to C and continue
along C to get a path of length N − 1.

Case 2. k = N − 2. Pick the leftover a, b outside C. It is clear that both of them have
edges to the cycle and ab is also an edge (since k(N−k) = 2(N−2) in this case). So starting
at a, going to b, to some vertex of C and following along C gives us a path of length N − 1.

The proof is complete.

Proof 3.
The idea is to prove the stronger claim by induction on N ≥ 3: a graph on N vertices

with
(
N−1
2

)
+ 2 edges has a cycle of length N . Deleting the extra edge will give a path of

length N − 1 through all the vertices.
The base case N = 3 is trivial. Suppose it holds for all k ≤ N , we prove it for N + 1.

Since
2(2+(N2 ))
N+1 > N − 2 we see that some vertex v has degree either N − 1 or N .

Case 1. If degree of v is N − 1. Then we have an edge e = uv missing among all the
edges through v. Delete v along with all the edges through it in the graph. The induced
graph has a cycle of length N . Pick two consecutive vertices that are not u, and append v
between them.
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Case 2. If degree of v is N . Delete v along with all its edges. Add an arbitrarily chosen
extra edge to the graph so obtained. By induction hypothesis, this resulting graph has
a cycle of length N . If removing the extra edge does not disrupt the cycle, append v
anywhere between two consecutive vertices. If it does break the cycle, use v to connect
the vertices it joined.

The induction is complete.

Problem 5 In a convex quadrilateral ABCD, ∠ABD = 30◦, ∠BCA = 75◦, ∠ACD = 25◦

and CD = CB. Extend CB to meet the circumcircle of triangle DAC at E. Prove that
CE = BD.

Solution. First we show that ∠DEC = 30◦. Choose a point F on AB such that CF = CB.
Join FC and FD. Observe that ∠DCB = 75◦ + 25◦ = 100◦. Since CD = CB, we have
∠CDB = ∠CBD = 40◦. Therefore ∠CBF = 40◦ + 30◦ = 70◦. This gives ∠CFB = 70◦.

Since CD = CB = CF , we have the isosceles triangle CDF . But ∠BCF = 40◦. Hence
∠FCD = 60◦. Therefore we have an equilateral triangle CDF . This means FD = FC = CD
and ∠DFC = 60◦.

Observe that ∠AFC = 110◦ and ∠FCA = 35◦. Hence ∠FAC = 35◦. This means FA =
FC = FD. Thus F is the circumcentre of 4ADC. This implies that

∠CAD =
∠CFD

2
= 30◦.

Therefore ∠DEC = ∠DAC = 30◦. Now concentrate on triangle DCE.
Construct an equilateral triangle ECG with CE as base, on the side of B. Join GD.

We have ∠CGE = ∠GCE = ∠CEG = 60◦ and CE = EG = GC. Since ∠CED = 30◦,
we get ∠GED = 30◦. Thus ED is the angle bisector of the isosceles triangle GEC. This
implies that ED is also the pependicular bisector of GC. Thus D is on the pependicular
bisector of GC. Therefore DC = DG and hence ∠DGC = ∠DCG.

But ∠DCG = 100◦ − 60◦ = 40◦. This implies that ∠DGC = 40◦ and hence ∠CDG = 100◦.
Consider the quadrilateral GBCD. We have DG = DC = CB, ∠GDC = 100◦ = ∠DCB.

It is an isosceles trapezium. ( or we can show that 4GDC ∼= 4BCD.) Therefore DB = GC.
But GC = CE. Thus we get DB = CE.
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Alternate Solution As in the previous solution, one shows that F is the circumcenter
of 4ADC. since E lies on this circumcircle, this means FE is equal to all of the sides
FA,FD,FC and thus also to CD and CB. Now CDB and FCE are both isosceles triangles
with base angles 40◦, and they have CD = FC, so they are in fact congruent. This directly
implies CE = BD, as required.

Problem 6. Let R[x] be the set of all polynomials with real coefficients, and let degP
denote the degree of a nonzero polynomial P . Find all functions f : R[x] → R[x] satisfying
the following conditions:

• f maps the zero polynomial to itself,

• for any non-zero polynomial P ∈ R[x], deg f(P ) ≤ 1 + degP , and

• for any two polynomials P,Q ∈ R[x], the polynomials P − f(Q) and Q− f(P ) have the
same set of real roots.

Solution.

Answer

We have f(p) = p∀p ∈ R[x], or f(p) = −p∀p ∈ R[x]. These clearly satisfy the given conditions.

Proof

Claim 1 For all p ∈ R[x], f(f(p)) = p.

Proof. Using condition 3 on the polynomials p and f(p), we see that p − f(f(p)) has the
same set of real roots as f(p) − f(p) = 0, which is R. Therefore p − f(f(p)) is identically
zero.

Note that this implies f is bijective. In what follows, p ∼ q will mean that p and q have
the same set of real roots. Note that putting f(q) for q in condition 2 gives p−q ∼ f(p)−f(q)
for all p, q (call this statement (?)). In particular, putting q = 0 here, p ∼ f(p) for all p (call
this (??)).

Claim 2 For all non-zero p ∈ R[x], deg p− 1 ≤ deg f(p) ≤ deg p+ 1.

Proof. The right inequality is simply condition 2. Now using condition 2 on the polynomial
f(p), we see that deg f(f(p)) ≤ deg f(p) + 1 which gives deg f(p) ≥ deg p− 1 because of claim
1.

Claim 3 For all p ∈ R[x], deg f(p) = deg p.

Proof. Note that nonzero constant polynomials have no root, so by (??), their image must
have no root. This is impossible if that image has degree 1; so by condition 2, the image
has degree 0, i.e., is a constant polynomial. First consider the case when deg p is even;
assume for now the leading coefficient of p is positive. That means p(x)→∞ for x→ ±∞,
so it has a global minimum, say C. Then the polynomial p + k (k > C) has no real roots.
Using (?) on p and the constant polynomial −k, we see that f(p) − f(−k) has no roots.
But this is impossible if deg f(p) is odd (since f(−k) is a constant), so by claim 2, we must
deg f(p) = deg p. A similar argument holds if p has negative leading coefficient.

Now if deg p is odd, then deg f(p) cannot be even, otherwise q = f(p) would be an even
degree polynomial whose image f(q) = f(f(p)) = p has odd degree, contradicting the last
paragraph. Thus deg f(p) is odd, and using claim 2, we infer than deg f(p) = deg p.

We call a polynomial p ninth-grade if all deg p roots of p are real and distinct. Clearly
for any ninth-grade p, p and f(p) have the roots and same degree, so f(p) = cpp for some
non-zero cp ∈ R.
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Claim 4 Given any non-constant q ∈ R[x], we can choose r with degree bigger than q so
that both r and q − r are ninth-grade.

Proof. Assume that all real roots of q are inside the interval [a, b]. Now choose a number n
which has the same parity as deg q and is bigger than deg q, and choose numbers c1 = a <
c2 < · · · < cn−1 < cn = b. Consider the polynomial p = k(x− c1)(x− c2) · · · (x− cn), so that k
has the same sign as the leading coefficient of q (value of k will be chosen later). Clearly
p has alternating signs on the intervals (−∞, c1), (c1, c2), · · · , (cn−1, cn), (cn,∞), and has
the same sign as q outside [a, b]. Let k1, k2, · · · , kn−1 be the extrema of p on the intervals
[c1, c2], · · · [cn−1, cn] in that order, and suppose they are attained at x1, · · ·xn−1. Make |k|
large enough so that |ki| > maxx∈[a,b] |q(x)| for all i. Then p + q has degree n, and has
alternating signs at a− ε, x1, · · · , xn, b+ ε for ε > 0, so it has exactly n distinct roots. Now it
is enough to take r = −p.

Claim 5 For any q ∈ R[x], f(q) = cqq for some non-zero real cq.

Proof. We have already proved this for ninth-grade polynomials. Take ninth-grade r so
that q−ris ninth grade and n = deg(q−r) > deg q. Then q−r ∼ f(q)−f(r) = f(q)−crr. Since
q− r is ninth-grade and has the same degree as f(q)− crr, q− r = c(f(q)− crr) = cf(q)− c1r
for non-zero reals c, c1. Comparing the leading term (which belongs to r) on both sides,
c1 = 1, therefore q = cf(q) =⇒ f(q) = cqq.

Claim 6 For any p, q ∈ R[x], cp = cq.

Proof. We note that for any two polynomials p, q if p− q has a real root which is not a root
of p, then cp = cq. Indeed, if s is a root of p − q (meaning p(s) = q(s) 6= 0), then it’s also a
root of f(p)− f(q) = cpp− cqq, so that cpp(s) = cqq(s) =⇒ cp = cq.

Now for any two p, q, choose odd N such that N > max{deg p,deg q}. Then the polyno-
mial r = xN is such that r − p and r − q both have real roots, so cq = cr = cp.

Claim 6 clearly means there is c ∈ R so that f(p) = cp for all p ∈ R[x]. Using the fact
f(f(p)) = p, we see that the only possibilities are c = 1 or c = −1, completing the proof.
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