Problems and Solutions. . . CRMO-2002

1. In an acute triangle $A B C$, points D, E, F are located on the sides $B C, C A, A B$ respectively such that

$$
\frac{C D}{C E}=\frac{C A}{C B}, \quad \frac{A E}{A F}=\frac{A B}{A C}, \quad \frac{B F}{B D}=\frac{B C}{B A} .
$$

Prove that $A D, B E, C F$ are the altitudes of $A B C$.
Solution: Put $C D=x$. Then with usual notations we get

$$
C E=\frac{C D \cdot C B}{C A}=\frac{a x}{b} .
$$

Since $A E=A C-C E=b-C E$, we obtain

$$
A E=\frac{b^{2}-a x}{b}, \quad A F=\frac{A E \cdot A C}{A B}=\frac{b^{2}-a x}{c}
$$

Fig. 1

Fig. 2

This in turn gives

$$
B F=A B-A F=\frac{c^{2}-b^{2}+a x}{c}
$$

Finally we obtain

$$
B D=\frac{c^{2}-b^{2}+a x}{a}
$$

Using $B D=a-x$, we get

$$
x=\frac{a^{2}-c^{2}+b^{2}}{2 a} .
$$

However, if L is the foot of perpendicular from A on to $B C$ then, using Pythagoras theorem in triangles $A L B$ and $A L C$ we get

$$
b^{2}-L C^{2}=c^{2}-(a-L C)^{2}
$$

which reduces to $L C=\left(a^{2}-c^{2}+b^{2}\right) / 2 a$. We conclude that $L C=D C$ proving $L=D$. Or, we can also infer that $x=b \cos C$ from cosine rule in triangle $A B C$. This implies that $C D=C L$, since $C L=b \cos C$ from right triangle $A L C$. Thus $A D$ is altitude on to $B C$. Similar proof works for the remaining altitudes.

Alternately, we see that $C D \cdot C B=C E \cdot C A$, so that $A B D E$ is a cyclic quadrilateral. Similarly we infer that $B C E F$ and $C A F D$ are also cyclic quadrilaterals. (See Fig. 2.) Thus $\angle A E F=$ $\angle B=\angle C E D$. Moreover $\angle B E D=\angle D A F=\angle D C F=\angle B C F=\angle B E F$. It follows that $\angle B E A=\angle B E C$ and hence each is a right angle thus proving that $B E$ is an altitude. Similarly we prove that $C F$ and $A D$ are altitudes. (Note that the concurrence of the lines $A D, B E$, $C F$ are not required.)
2. Solve the following equation for real x :

$$
\left(x^{2}+x-2\right)^{3}+\left(2 x^{2}-x-1\right)^{3}=27\left(x^{2}-1\right)^{3}
$$

Solution: By setting $u=x^{2}+x-2$ and $v=2 x^{2}-x-1$, we observe that the equation reduces to $u^{3}+v^{3}=(u+v)^{3}$. Since $(u+v)^{3}=u^{3}+v^{3}+3 u v(u+v)$, it follows that $u v(u+v)=0$. Hence $u=0$ or $v=0$ or $u+v=0$. Thus we obtain $x^{2}+x-2=0$ or $2 x^{2}-x-1=0$ or $x^{2}-1=0$. Solving each of them we get $x=1,-2$ or $x=1,-1 / 2$ or $x=1,-1$. Thus $x=1$ is a root of multiplicity 3 and the other roots are $-1,-2,-1 / 2$.
(Alternately, it can be seen that $x-1$ is a factor of $x^{2}+x-2,2 x^{2}-x-1$ and $x^{2}-1$. Thus we can write the equation in the form

$$
(x-1)^{3}(x+2)^{3}+(x-1)^{3}(2 x+1)^{3}=27(x-1)^{3}(x+1)^{3} .
$$

Thus it is sufficient to solve the cubic equation

$$
(x+2)^{3}+(2 x+1)^{3}=27(x+1)^{3} .
$$

This can be solved as earlier or expanding every thing and simplifying the relation.)
3. Let a, b, c be positive integers such that a divides b^{2}, b divides c^{2} and c divides a^{2}. Prove that $a b c$ divides $(a+b+c)^{7}$.

Solution: Consider the expansion of $(a+b+c)^{7}$. We show that each term here is divisible by $a b c$. It contains terms of the form $r_{k l m} a^{k} b^{l} c^{m}$, where $r_{k l m}$ is a constant (some binomial coefficient) and k, l, m are nonnegative integers such that $k+l+m=7$. If $k \geq 1, l \geq 1, m \geq 1$, then $a b c$ divides $a^{k} b^{l} c^{m}$. Hence we have to consider terms in which one or two of k, l, m are zero. Suppose for example $k=l=0$ and consider c^{7}. Since b divides c^{2} and a divides c^{4}, it follows that $a b c$ divides c^{7}. A similar argument gives the result for a^{7} or b^{7}. Consider the case in which two indices are nonzero, say for example, $b c^{6}$. Since a divides c^{4}, here again $a b c$ divides $b c^{6}$. If we take $b^{2} c^{5}$, then also using a divides c^{4} we obtain the result. For $b^{3} c^{4}$, we use the fact that a divides b^{2}. Similar argument works for $b^{4} c^{3}, b^{5} c^{2}$ and $b^{6} c$. Thus each of the terms in the expansion of $(a+b+c)^{7}$ is divisible by $a b c$.
4. Suppose the integers $1,2,3, \ldots, 10$ are split into two disjoint collections $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$ and $b_{1}, b_{2}, b_{3}, b_{4}, b_{5}$ such that

$$
\begin{array}{r}
a_{1}<a_{2}<a_{3}<a_{4}<a_{5} \\
b_{1}>b_{2}>b_{3}>b_{4}>b_{5}
\end{array}
$$

(i) Show that the larger number in any pair $\left\{a_{j}, b_{j}\right\}, 1 \leq j \leq 5$, is at least 6 .
(ii) Show that $\left|a_{1}-b_{1}\right|+\left|a_{2}-b_{2}\right|+\left|a_{3}-b_{3}\right|+\left|a_{4}-b_{4}\right|+\left|a_{5}-b_{5}\right|=25$ for every such partition.

Solution:

(i) Fix any pair $\left\{a_{j}, b_{j}\right\}$. We have $a_{1}<a_{2}<\cdots<a_{j-1}<a_{j}$ and $b_{j}>b_{j+1}>\cdots>b_{5}$. Thus there are $j-1$ numbers smaller than a_{j} and $5-j$ numbers smaller than b_{j}. Together they account for $j-1+5-j=4$ distinct numbers smaller than a_{j} as well as b_{j}. Hence the larger of a_{j} and b_{j} is at least 6 .
(ii) The first part shows that the larger numbers in the pairs $\left\{a_{j}, b_{j}\right\}, 1 \leq j \leq 5$, are $6,7,8,9,10$ and the smaller numbers are $1,2,3,4,5$. This implies that

$$
\begin{aligned}
\left|a_{1}-b_{1}\right|+\left|a_{2}-b_{2}\right|+\left|a_{3}-b_{3}\right|+\left|a_{4}-b_{4}\right| & +\left|a_{5}-b_{5}\right| \\
& =10+9+8+7+6-(1+2+3+4+5)=25
\end{aligned}
$$

5. The circumference of a circle is divided into eight arcs by a convex quadrilateral $A B C D$, with four arcs lying inside the quadrilateral and the remaining four lying outside it. The lengths of the arcs lying inside the quadrilateral are denoted by p, q, r, s in counter-clockwise direction starting from some arc. Suppose $p+r=q+s$. Prove that $A B C D$ is a cyclic quadrilateral.

Solution: Let the lengths of the $\operatorname{arcs} X Y, U V, E F, G H$ be respectively p, q, r, s. We also the following notations: (See figure)

$\angle X A Y=\alpha_{1}, \angle A Y P=\alpha_{2}, \angle Y P X=\alpha_{3}, \angle P X A=\alpha_{4}, \angle U B Y=\beta_{1}, \angle B V P=\beta_{2}, \angle V P U=$ $\beta_{3}, \angle P U B=\beta_{4}, \angle E C F=\gamma_{1}, \angle C F P=\gamma_{2}, \angle F P E=\gamma_{3}, \angle P E C=\gamma_{4}, \angle G D H=\delta_{1}$, $\angle D H P=\delta_{2}, \angle H P G=\delta_{3}, \angle P G D=\delta_{4}$.
We observe that

$$
\sum \alpha_{j}=\sum \beta_{j}=\sum \gamma_{j}=\sum \delta_{j}=2 \pi
$$

It follows that

$$
\sum\left(\alpha_{j}+\gamma_{j}\right)=\sum\left(\beta_{j}+\delta_{j}\right)
$$

On the other hand, we also have $\alpha_{2}=\beta_{4}$ since $P Y=P U$. Similarly we have other relations: $\beta_{2}=\gamma_{4}, \gamma_{2}=\delta_{4}$ and $\delta_{2}=\alpha_{4}$. It follows that

$$
\alpha_{1}+\alpha_{3}+\gamma_{1}+\gamma_{3}=\beta_{1}+\beta_{3}+\delta_{1}+\delta_{3} .
$$

Downloaded From :http://cbseportal.com/

But $p+r=q+s$ implies that $\alpha_{3}+\gamma_{3}=\beta_{3}+\delta_{3}$. We thus obtain

$$
\alpha_{1}+\gamma_{1}=\beta_{1}+\delta_{1} .
$$

Since $\alpha_{1}+\gamma_{1}+\beta_{1}+\delta_{1}=360^{\circ}$, it follows that $A B C D$ is a cyclic quadrilateral.
6. For any natural number $n>1$, prove the inequality:

$$
\frac{1}{2}<\frac{1}{n^{2}+1}+\frac{2}{n^{2}+2}+\frac{3}{n^{2}+3}+\cdots+\frac{n}{n^{2}+n}<\frac{1}{2}+\frac{1}{2 n} .
$$

Solution: We have $n^{2}<n^{2}+1<n^{2}+2<n^{2}+3 \cdots<n^{2}+n$. Hence we see that

$$
\begin{aligned}
\frac{1}{n^{2}+1}+\frac{2}{n^{2}+2}+\cdots+\frac{n}{n^{2}+n} & >\frac{1}{n^{2}+n}+\frac{2}{n^{2}+n}+\cdots+\frac{n}{n^{2}+n} \\
& =\frac{1}{n^{2}+n}(1+2+3+\cdots n)=\frac{1}{2}
\end{aligned}
$$

Similarly, we see that

$$
\begin{aligned}
\frac{1}{n^{2}+1}+\frac{2}{n^{2}+2}+\cdots+\frac{n}{n^{2}+n} & <\frac{1}{n^{2}}+\frac{2}{n^{2}}+\cdots+\frac{n}{n^{2}} \\
& =\frac{1}{n^{2}}(1+2+3+\cdots n)=\frac{1}{2}+\frac{1}{2 n} .
\end{aligned}
$$

7. Find all integers a, b, c, d satisfying the following relations:
(i) $1 \leq a \leq b \leq c \leq d$;
(ii) $a b+c d=a+b+c+d+3$.

Solution: We may write (ii) in the form

$$
a b-a-b+1+c d-c-d+1=5 .
$$

Thus we obtain the equation $(a-1)(b-1)+(c-1)(d-1)=5$. If $a-1 \geq 2$, then (i) shows that $b-1 \geq 2, c-1 \geq 2$ and $d-1 \geq 2$ so that $(a-1)(b-1)+(c-1)(d-1) \geq 8$. It follows that $a-1=0$ or 1 .
If $a-1=0$, then the contribution from $(a-1)(b-1)$ to the sum is zero for any choice of b. But then $(c-1)(d-1)=5$ implies that $c-1=1$ and $d-1=5$ by (i). Again (i) shows that $b-1=0$ or 1 since $b \leq c$. Taking $b-1=0, c-1=1$ and $d-1=5$ we get the solution $(a, b, c, d)=(1,1,2,6)$. Similarly, $b-1=1, c-1=1$ and $d-1=5$ gives $(a, b, c, d)=(1,2,2,6)$. In the other case $a-1=1$, we see that $b-1=2$ is not possible for then $c-1 \geq 2$ and $d-1 \geq 2$. Thus $b-1=1$ and this gives $(c-1)(d-1)=4$. It follows that $c-1=1$, $d-1=4$ or $c-1=2, d-1=2$. Considering each of these, we get two more solutions: $(a, b, c, d)=(2,2,2,5),(2,2,3,3)$.
It is easy to verify all these four quadruples are indeed solutions to our problem.

