Downl oddbd 45O an hfqtepang],é(t b adt L diyfF’ be the feet of perpendiculars from
A, B, C respectively to BC, CA, AB. Let the perpendiculars from F' to CB, CA, AD, BE

meet them in P,Q, M, N respectively. Prove that P,Q, M, N are collinear.
Solution: Observe that C,Q, F, P are concyclic. Hence
ZCQP =/ZCFP =90° - LZFCP = /B.
Similarly the concyclicity of F, M, Q, A gives
ZAQN =90° + LFQM =90° + LFAM =90° + 90° — /B = 180° — 4B.
Thus we obtain ZCQP + ZAQN = 180°. It follows that @), N, P lie on the same line.
AnQ

S M

B P D C

We can similarly prove that ZCPQ + ZBPM = 180°. This implies that P, M, are
collinear. Thus M, N both lie on the line joining P and Q.

2. Find the least possible value of a + b, where a,b are positive integers such that 11 divides
a + 13b and 13 divides a + 11b.

Solution:Since 13 divides a + 11b, we see that 13 divides a — 2b and hence it also divides
6a — 12b. This in turn implies that 13|(6a + b). Similarly 11|(a + 13b) = 11{(a + 2b) =
11|(6a + 12b) = 11|(6a + b). Since ged(11,13) = 1, we conclude that 143|(6a + b). Thus
we may write 6a + b = 143k for some natural number k. Hence

6a + 6b = 143k + 5b = 144k + 6b — (k + b).
This shows that 6 divides k£ + b and hence k + b > 6. We therefore obtain
6(a + b) = 143k + 5b = 138k + 5(k + b) > 138 + 5 x 6 = 168.

It follows that a + b > 28. Taking a = 23 and b = 5, we see that the conditions of the
problem are satisfied. Thus the minimum value of a + b is 28.

3. If a, b, c are three positive real numbers, prove that

a?+1 V+1 2+1
> 3.
b+c c+a a+b —

Solution: We use the trivial inequalities a® + 1 > 2a, 5> +1 > 2b and ¢ + 1 > 2¢. Hence

we obtain
a?2+1 bv+1 02+1> 2a 2b 2¢

b+c c+a a+b_b+c+c+a+a+b'

1
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Adding 6 both sides, this is equivalent to

1 1 1
2 2b+ 2 > 9.
(20 +2b+ C)(b+c+c+a+a—l—b)_

Taking z =b+ ¢, y = c+ a, z = a + b, this is equivalent to
1 1 1
(z+y+2) <—+—+—> > 9.
T Yy =z
This is a consequence of AM-GM inequality.

Alternately: The substitutionsb+c=z,c+a =1y, a+ b=z leads to

b+c Zy+z_$zz<5+%)—3zﬁ—3:3.

Y

4. A 6 x 6 square is dissected in to 9 rectangles by lines parallel to its sides such that all these
rectangles have integer sides. Prove that there are always two congruent rectangles.

Solution: Consider the dissection of the given 6 X 6 square in to non-congruent rectangles
with least possible areas. The only rectangle with area 1 is an 1 x 1 rectangle. Similarly,
we get 1 x 2, 1 x 3 rectangles for areas 2 ,3 units. In the case of 4 units we may have either
a 1 x 4 rectangle or a 2 x 2 square. Similarly, there can be a 1 x 5 rectangle for area 5 units
and 1 x 6 or 2 x 3 rectangle for 6 units. Any rectangle with area 7 units must be 1 x 7
rectangle, which is not possible since the largest side could be 6 units. And any rectangle
with area 8 units must be a 2 x 4 rectangle If there is any dissection of the given 6 x 6 square
in to 9 non-congruent rectangles with areas a1 < a2 < a3 < a4 < a5 < ag < a7 < ag < ag,
then we observe that

ap > 1,a2>2,a3>3,a4 >4, a5 >4, a6 >5, ar > 6, ag > 6, ag > 8,
and hence the total area of all the rectangles is
a1 +ag+--+ag>1+2+3+4+4+5+6+6+8=239> 36,

which is the area of the given square. Hence if a 6 X 6 square is dissected in to 9 rectangles
as stipulated in the problem, there must be two congruent rectangles.

5. Let ABCD be a quadrilateral in which AB is parallel to CD and perpendicular to AD;
AB = 3CD; and the area of the quadrilateral is 4. If a circle can be drawn touching all the
sides of the quadrilateral, find its radius.

Solution: Let P, (), R, S be the points of contact of in-circle with the sides AB, BC, CD,
DA respectively. Since AD is perpendicular to AB and AB is parallel to DC, we see that
AP = AS = SD = DR = r, the radius of the inscribed circle. Let BP = BQ = y and
CQ =CR=1z. Using AB =3CD, we get r +y = 3(r + z).
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Since the area of ABCD is 4, we also get
1 1

Thus we obtain r(r + z) = 1. Using Pythagoras theorem, we obtain BC? = BK? + CK?.
However BC' =y + z, BK =y — x and CK = 2r. Substituting these and simplifying, we
get zy = r2. But r+y = 3(r+x) gives y = 2r + 3x. Thus r2 = z(2r + 3z) and this simplifies
to (r — 3z)(r + ) = 0. We conclude that r = 3z. Now the relation r(r + z) = 1 implies
that 4r? = 3, giving r = v/3/2.

6. Prove that there are infinitely many positive integers n such that n(n + 1) can be expressed
as a sum of two positive squares in at least two different ways. (Here a? +b% and b% 4 a? are
considered as the same representation.)

Solution: Let Q = n(n + 1). It is convenient to choose n = m?, for then Q is already a
sum of two squares: Q = m? (m2 + 1) = (m2)2 + m?2. If further m? itself is a sum of two
squares, say m? = p? + ¢2, then

Q=2+ @) (m2+1) = (pm+q)*+ (p— qm)>.

Note that the two representations for () are distinct. Thus, for example, we may take
m = 5k, p = 3k, ¢ = 4k, where k varies over natural numbers. In this case n = m? = 25k,

and
Q = (25K2)% + (5k)% = (15> + 4k)* + (20k2 — 3k)°.

As we vary k over natural numbers, we get infinitely many numbers of the from n(n + 1)
each of which can be expressed as a sum of two squares in two distinct ways.

7. fB€tb&Xabe the set of all positive integers greater than or equal to 8 and let

fufRiiciysditetitey > 4. If

Solution: We observe that

/ (EH—
~(Ep—

H@f)ce=19, t{ihis is one string. There may be other different ways

of iipfilaelimportant thing to be observed is the fact that the
ri{ffy} gppties only when z and y are at least 4. One may get strings using
numbers z and y which are smaller than 4, but that is not valid. For example

f(@hRp)—=

is not a valid string.)
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