Paper 1	Regional Mathematical Olympiad 2013	December 1, 2013

- 1. Let ABC be an acute-angled triangle. The circle Γ with BC as diameter intersects AB and AC again at P and Q, respectively. Determine $\angle BAC$ given that the orthocentre of triangle APQ lies on Γ .
- 2. Let $f(x) = x^3 + ax^2 + bx + c$ and $g(x) = x^3 + bx^2 + cx + a$, where a, b, c are integers with $c \neq 0$. Suppose that the following conditions hold:
 - (a) f(1) = 0;
 - (b) the roots of g(x) = 0 are the squares of the roots of f(x) = 0.

Find the value of $a^{2013} + b^{2013} + c^{2013}$.

- 3. Find all primes p and q such that p divides $q^2 4$ and q divides $p^2 1$.
- 4. Find the number of 10-tuples $(a_1, a_2, \ldots, a_{10})$ of integers such that $|a_1| \leq 1$ and

$$a_1^2 + a_2^2 + a_3^2 + \dots + a_{10}^2 - a_1 a_2 - a_2 a_3 - a_3 a_4 - \dots - a_9 a_{10} - a_{10} a_1 = 2.$$

- 5. Let ABC be a triangle with $\angle A = 90^{\circ}$ and AB = AC. Let D and E be points on the segment BC such that BD : DE : EC = 3 : 5 : 4. Prove that $\angle DAE = 45^{\circ}$.
- 6. Suppose that m and n are integers such that both the quadratic equations $x^2 + mx n = 0$ and $x^2 - mx + n = 0$ have integer roots. Prove that n is divisible by 6.

*