1. Prove that there do not exist natural numbers x and y, with $x>1$, such that

$$
\frac{x^{7}-1}{x-1}=y^{5}+1
$$

2. In a triangle $A B C, A D$ is the altitude from A, and H is the orthocentre. Let K be the centre of the circle passing through D and tangent to $B H$ at H. Prove that the line $D K$ bisects $A C$.
3. Consider the expression

$$
2013^{2}+2014^{2}+2015^{2}+\cdots+n^{2}
$$

Prove that there exists a natural number $n>2013$ for which one can change a suitable number of plus signs to minus signs in the above expression to make the resulting expression equal 9999.
4. Let $A B C$ be a triangle with $\angle A=90^{\circ}$ and $A B=A C$. Let D and E be points on the segment $B C$ such that $B D: D E: E C=1: 2: \sqrt{3}$. Prove that $\angle D A E=45^{\circ}$.
5. Let $n \geq 3$ be a natural number and let P be a polygon with n sides. Let $a_{1}, a_{2}, \ldots, a_{n}$ be the lengths of the sides of P and let p be its perimeter. Prove that

$$
\frac{a_{1}}{p-a_{1}}+\frac{a_{2}}{p-a_{2}}+\cdots+\frac{a_{n}}{p-a_{n}}<2 .
$$

6. For a natural number n, let $T(n)$ denote the number of ways we can place n objects of weights $1,2, \ldots, n$ on a balance such that the sum of the weights in each pan is the same. Prove that $T(100)>T(99)$.
