1. Find the number of eight-digit numbers the sum of whose digits is 4 .
2. Find all 4-tuples (a, b, c, d) of natural numbers with $a \leq b \leq c$ and $a!+b!+c!=3^{d}$.
3. In an acute-angled triangle $A B C$ with $A B<A C$, the circle Γ touches $A B$ at B and passes through C intersecting $A C$ again at D. Prove that the orthocentre of triangle $A B D$ lies on Γ if and only if it lies on the perpendicular bisector of $B C$.
4. A polynomial is called a Fermat polynomial if it can be written as the sum of the squares of two polynomials with integer coefficients. Suppose that $f(x)$ is a Fermat polynomial such that $f(0)=1000$. Prove that $f(x)+2 x$ is not a Fermat polynomial.
5. Let $A B C$ be a triangle which it not right-angled. Define a sequence of triangles $A_{i} B_{i} C_{i}$, with $i \geq 0$, as follows: $A_{0} B_{0} C_{0}$ is the triangle $A B C$; and, for $i \geq 0, A_{i+1}, B_{i+1}, C_{i+1}$ are the reflections of the orthocentre of triangle $A_{i} B_{i} C_{i}$ in the sides $B_{i} C_{i}, C_{i} A_{i}, A_{i} B_{i}$, respectively. Assume that $\angle A_{m}=\angle A_{n}$ for some distinct natural numbers m, n. Prove that $\angle A=60^{\circ}$.
6. Let $n \geq 4$ be a natural number. Let $A_{1} A_{2} \cdots A_{n}$ be a regular polygon and $X=\{1,2, \ldots, n\}$. A subset $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$ of X, with $k \geq 3$ and $i_{1}<i_{2}<\cdots<i_{k}$, is called a good subset if the angles of the polygon $A_{i_{1}} A_{i_{2}} \cdots A_{i_{k}}$, when arranged in the increasing order, are in an arithmetic progression. If n is a prime, show that a proper good subset of X contains exactly four elements.
