1. Let Γ be a circle with centre O. Let Λ be another circle passing through O and intersecting Γ at points A and B. A diameter $C D$ of Γ intersects Λ at a point P different from O. Prove that

$$
\angle A P C=\angle B P D
$$

2. Determine the smallest prime that does not divide any five-digit number whose digits are in a strictly increasing order.
3. Given real numbers $a, b, c, d, e>1$ prove that

$$
\frac{a^{2}}{c-1}+\frac{b^{2}}{d-1}+\frac{c^{2}}{e-1}+\frac{d^{2}}{a-1}+\frac{e^{2}}{b-1} \geq 20
$$

4. Let x be a non-zero real number such that $x^{4}+\frac{1}{x^{4}}$ and $x^{5}+\frac{1}{x^{5}}$ are both rational numbers. Prove that $x+\frac{1}{x}$ is a rational number.
5. In a triangle $A B C$, let H denote its orthocentre. Let P be the reflection of A with respect to $B C$. The circumcircle of triangle $A B P$ intersects the line $B H$ again at Q, and the circumcircle of triangle $A C P$ intersects the line $C H$ again at R. Prove that H is the incentre of triangle $P Q R$.
6. Suppose that the vertices of a regular polygon of 20 sides are coloured with three colours red, blue and green - such that there are exactly three red vertices. Prove that there are three vertices A, B, C of the polygon having the same colour such that triangle $A B C$ is isosceles.
