Regional Mathematical Olympiad-2014

Time: 3 hours
December 07, 2014

Instructions:

- Calculators (in any form) and protractors are not allowed.
- Rulers and compasses are allowed.
- Answer all the questions.
- All questions carry equal marks. Maximum marks: 102.
- Answer to each question should start on a new page. Clearly indicate the question number.

1. Let $A B C$ be a triangle and let $A D$ be the perpendicular from A on to $B C$. Let K, L, M be points on $A D$ such that $A K=K L=L M=M D$. If the sum of the areas of the shaded regions is equal to the sum of the areas of the unshaded regions, prove that $B D=D C$.

2. Let $a_{1}, a_{2}, \ldots, a_{2 n}$ be an arithmetic progression of positive real numbers with common difference d. Let
(i) $a_{1}^{2}+a_{3}^{2}+\cdots+a_{2 n-1}^{2}=x$, (ii) $a_{2}^{2}+a_{4}^{2}+\cdots+a_{2 n}^{2}=y$, and (iii) $a_{n}+a_{n+1}=z$.

Express d in terms of x, y, z, n.
3. Suppose for some positive integers r and s, the digits of 2^{r} is obtained by permuting the digits of 2^{s} in decimal expansion. Prove that $r=s$.
4. Is it possible to write the numbers $17,18,19, \ldots, 32$ in a 4×4 grid of unit squares, with one number in each square, such that the product of the numbers in each 2×2 sub-grids $A M R G, G R N D, M B H R$ and $R H C N$ is divisible by 16 ?

5. Let $A B C$ be an acute-angled triangle and let H be its ortho-centre. For any point P on the circum-circle of triangle $A B C$, let Q be the point of intersection of the line $B H$ with the line $A P$. Show that there is a unique point X on the circum-circle of $A B C$ such that for every point $P \neq A, B$, the circum-circle of $H Q P$ pass through X.
6. Let $x_{1}, x_{2}, \ldots, x_{2014}$ be positive real numbers such that $\sum_{j=1}^{2014} x_{j}=1$. Determine with proof the smallest constant K such that

$$
K \sum_{j=1}^{2014} \frac{x_{j}^{2}}{1-x_{j}} \geq 1
$$

