Regional Mathematical Olympiad-2014

Time: 3 hours
December 07, 2014
Instructions:

- Calculators (in any form) and protractors are not allowed.
- Rulers and compasses are allowed.
- Answer all the questions.
- All questions carry equal marks. Maximum marks: 102.
- Answer to each question should start on a new page. Clearly indicate the question number.

1. In an acute-angled triangle $A B C, \angle A B C$ is the largest angle. The perpendicular bisectors of $B C$ and $B A$ intersect $A C$ at X and Y respectively. Prove that circumcentre of triangle $A B C$ is incentre of triangle $B X Y$.
2. Let x, y, z be positive real numbers. Prove that

$$
\frac{y^{2}+z^{2}}{x}+\frac{z^{2}+x^{2}}{y}+\frac{x^{2}+y^{2}}{z} \geq 2(x+y+z)
$$

3. Find all pairs of (x, y) of positive integers such that $2 x+7 y$ divides $7 x+2 y$.
4. For any positive integer $n>1$, let $P(n)$ denote the largest prime not exceeding n. Let $N(n)$ denote the next prime larger than $P(n)$. (For example $P(10)=7$ and $N(10)=11$, while $P(11)=11$ and $N(11)=13$.) If $n+1$ is a prime number, prove that the value of the sum

$$
\frac{1}{P(2) N(2)}+\frac{1}{P(3) N(3)}+\frac{1}{P(4) N(4)}+\cdots+\frac{1}{P(n) N(n)}=\frac{n-1}{2 n+2} .
$$

5. Let $A B C$ be a triangle with $A B>A C$. Let P be a point on the line $A B$ beyond A such that $A P+P C=A B$. Let M be the mid-point of $B C$ and let Q be the point on the side $A B$ such that $C Q \perp A M$. Prove that $B Q=2 A P$.
6. Let n be an odd positive integer and suppose that each square of an $n \times n$ grid is arbitrarily filled with either by 1 or by -1 . Let r_{j} and c_{k} denote the product of all numbers in j-th row and k-th column respectively, $1 \leq j, k \leq n$. Prove that

$$
\sum_{j=1}^{n} r_{j}+\sum_{k=1}^{n} c_{k} \neq 0
$$

