Regional Mathematical Olympiad-2014

Time: 3 hours
December 07, 2014
Instructions:

- Calculators (in any form) and protractors are not allowed.
- Rulers and compasses are allowed.
- Answer all the questions.
- All questions carry equal marks. Maximum marks: 102.
- Answer to each question should start on a new page. Clearly indicate the question number.

1. Let $A B C$ be an acute-angled triangle and suppose $\angle A B C$ is the largest angle of the triangle. Let R be its circumcentre. Suppose the circumcircle of triangle $A R B$ cuts $A C$ again in X. Prove that $R X$ is pependicular to $B C$.
2. Find all real numbers x and y such that

$$
x^{2}+2 y^{2}+\frac{1}{2} \leq x(2 y+1)
$$

3. Prove that there does not exist any positive integer $n<2310$ such that $n(2310-n)$ is a multiple of 2310 .
4. Find all positive real numbers x, y, z such that

$$
2 x-2 y+\frac{1}{z}=\frac{1}{2014}, \quad 2 y-2 z+\frac{1}{x}=\frac{1}{2014}, \quad 2 z-2 x+\frac{1}{y}=\frac{1}{2014} .
$$

5. Let $A B C$ be a triangle. Let X be on the segment $B C$ such that $A B=A X$. Let $A X$ meet the circumcircle Γ of triangle $A B C$ again at D. Show that the circumcentre of $\triangle B D X$ lies on Γ.
6. For any natural number n, let $S(n)$ denote the sum of the digits of n. Find the number of all 3 -digit numbers n such that $S(S(n))=2$.
