Regional Mathematical Olympiad-2014

Time: 3 hours
December 07, 2014
Instructions:

- Calculators (in any form) and protractors are not allowed.
- Rulers and compasses are allowed.
- Answer all the questions.
- All questions carry equal marks. Maximum marks: 102.
- Answer to each question should start on a new page. Clearly indicate the question number.

1. Let $A B C D$ be an isosceles trapezium having an incircle; let $A B$ and $C D$ be the parallel sides and let $C E$ be the perpendicular from C on to $A B$. Prove that $C E$ is equal to the geometric mean of $A B$ and $C D$.
2. If x and y are positive real numbers, prove that

$$
4 x^{4}+4 y^{3}+5 x^{2}+y+1 \geq 12 x y
$$

3. Determine all pairs $m>n$ of positive integers such that

$$
1=\operatorname{gcd}(n+1, m+1)=\operatorname{gcd}(n+2, m+2)=\cdots=\operatorname{gcd}(m, 2 m-n)
$$

4. What is the minimal area of a right-angled triangle whose inradius is 1 unit?
5. Let $A B C$ be an acute-angled triangle and let I be its incentre. Let the incircle of triangle $A B C$ touch $B C$ in D. The incircle of the triangle $A B D$ touches $A B$ in E; the incircle of the triangle $A C D$ touches $B C$ in F. Prove that B, E, I, F are concyclic.
6. In the adjacent figure, can the numbers $1,2,3,4, \cdots, 18$ be placed, one on each line segment, such that the sum of the numbers on the three line segments meeting at each point is divisible by 3 ?

