Regional Mathematical Olympiad-2015

Time: 3 hours
December 06, 2015

Instructions:

- Calculators (in any form) and protractors are not allowed.
- Rulers and compasses are allowed.
- Answer all the questions.
- All questions carry equal marks. Maximum marks: 102.
- Answer to each question should start on a new page. Clearly indicate the question number.

1. In a cyclic quadrilateral $A B C D$, let the diagonals $A C$ and $B D$ intersect at X. Let the circumcircles of triangles $A X D$ and $B X C$ intersect again at Y. If X is the incentre of triangle $A B Y$, show that $\angle C A D=90^{\circ}$.
2. Let $P_{1}(x)=x^{2}+a_{1} x+b_{1}$ and $P_{2}(x)=x^{2}+a_{2} x+b_{2}$ be two quadratic polynomials with integer coefficients. Suppose $a_{1} \neq a_{2}$ and there exist integers $m \neq n$ such that $P_{1}(m)=P_{2}(n), P_{2}(m)=P_{1}(n)$. Prove that $a_{1}-a_{2}$ is even.
3. Find all fractions which can be written simultaneously in the forms $\frac{7 k-5}{5 k-3}$ and $\frac{6 l-1}{4 l-3}$, for some integers k, l.
4. Suppose 28 objects are placed along a circle at equal distances. In how many ways can 3 objects be chosen from among them so that no two of the three chosen objects are adjacent nor diametrically opposite?
5. Let $A B C$ be a right triangle with $\angle B=90^{\circ}$. Let E and F be respectively the mid-points of $A B$ and $A C$. Suppose the incentre I of triangle $A B C$ lies on the circumcircle of triangle $A E F$. Find the ratio $B C / A B$.
6. Find all real numbers a such that $3<a<4$ and $a(a-3\{a\})$ is an integer. (Here $\{a\}$ denotes the fractional part of a. For example $\{1.5\}=0.5 ;\{-3.4\}$ $=0.6$.)
