Regional Mathematical Olympiad-2015

Time: 3 hours
December 06, 2015

Instructions:

- Calculators (in any form) and protractors are not allowed.
- Rulers and compasses are allowed.
- Answer all the questions.
- All questions carry equal marks. Maximum marks: 102.
- Answer to each question should start on a new page. Clearly indicate the question number.

1. Let $A B C$ be a triangle. Let B^{\prime} and C^{\prime} denote respectively the reflection of B and C in the internal angle bisector of $\angle A$. Show that the triangles $A B C$ and $A B^{\prime} C^{\prime}$ have the same incentre.
2. Let $P(x)=x^{2}+a x+b$ be a quadratic polynomial with real coefficients. Suppose there are real numbers $s \neq t$ such that $P(s)=t$ and $P(t)=s$. Prove that $b-s t$ is a root of the equation $x^{2}+a x+b-s t=0$.
3. Find all integers a, b, c such that

$$
a^{2}=b c+1, \quad b^{2}=c a+1
$$

4. Suppose 32 objects are placed along a circle at equal distances. In how many ways can 3 objects be chosen from among them so that no two of the three chosen objects are adjacent nor diametrically opposite?
5. Two circles Γ and Σ in the plane intersect at two distinct points A and B, and the centre of Σ lies on Γ. Let points C and D be on Γ and Σ, respectively, such that C, B and D are collinear. Let point E on Σ be such that $D E$ is parallel to $A C$. Show that $A E=A B$.
6. Find all real numbers a such that $4<a<5$ and $a(a-3\{a\})$ is an integer. (Here $\{a\}$ denotes the fractional part of a. For example $\{1.5\}=0.5 ;\{-3.4\}$ $=0.6$.)
