Regional Mathematical Olympiad-2015

Time: 3 hours
December 06, 2015
Instructions:

- Calculators (in any form) and protractors are not allowed.
- Rulers and compasses are allowed.
- Answer all the questions.
- All questions carry equal marks. Maximum marks: 102.
- Answer to each question should start on a new page. Clearly indicate the question number.

1. Let $A B C$ be a triangle. Let B^{\prime} denote the reflection of B in the internal angle bisector ℓ of $\angle A$. Show that the circumcentre of the triangle $C B^{\prime} I$ lies on the line ℓ, where I is the incentre of $A B C$.
2. Let $P(x)=x^{2}+a x+b$ be a quadratic polynomial where a is real and b is rational. Suppose $P(0)^{2}, P(1)^{2}, P(2)^{2}$ are integers. Prove that a and b are integers.
3. Find all integers a, b, c such that

$$
a^{2}=b c+4, \quad b^{2}=c a+4
$$

4. Suppose 40 objects are placed along a circle at equal distances. In how many ways can 3 objects be chosen from among them so that no two of the three chosen objects are adjacent nor diametrically opposite?
5. Two circles Γ and Σ intersect at two distinct points A and B. A line through B intersects Γ and Σ again at C and D, respectively. Suppose that $C A=$ $C D$. Show that the centre of Σ lies on Γ.
6. How many integers m satisfy both the following properties:
(i) $1 \leq m \leq 5000$; (ii) $[\sqrt{m}]=[\sqrt{m+125}]$?
(Here $[x]$ denotes the largest integer not exceeding x, for any real number x.
\qquad
