Regional Mathematical Olympiad-2016

Time: 3 hours

October 09, 2016

Instructions:

- Calculators (in any form) and protractors are not allowed.
- Rulers and compasses are allowed.
- Answer all the questions.
- All questions carry equal marks. Maximum marks: 102.
- Answer to each question should start on a new page. Clearly indicate the question number.

1. Let $A B C$ be a right-angled triangle with $\angle B=90^{\circ}$. Let I be the incentre of $A B C$. Draw a line perpendicular to $A I$ at I. Let it intersect the line $C B$ at D. Prove that $C I$ is perpendicular to $A D$ and prove that $I D=\sqrt{b(b-a)}$ where $B C=a$ and $C A=b$.
2. Let a, b, c be positive real numbers such that

$$
\frac{a}{1+a}+\frac{b}{1+b}+\frac{c}{1+c}=1
$$

Prove that $a b c \leq 1 / 8$.
3. For any natural number n, expressed in base 10 , let $S(n)$ denote the sum of all digits of n. Find all natural numbers n such that $n=2 S(n)^{2}$.
4. Find the number of all 6 -digit natural numbers having exactly three odd digits and three even digits.
5. Let $A B C$ be a triangle with centroid G. Let the circumcircle of triangle $A G B$ intersect the line $B C$ in X different from B; and the circumcircle of triangle $A G C$ intersect the line $B C$ in Y different from C. Prove that G is the centroid of triangle $A X Y$.
6. Let $\left\langle a_{1}, a_{2}, a_{3}, \ldots\right\rangle$ be a strictly increasing sequence of positive integers in an arithmetic progression. Prove that there is an infinite subsequence of the given sequence whose terms are in a geometric progression.

