Regional Mathematical Olympiad-2016

Time: 3 hours

October 09, 2016

Instructions:

- Calculators (in any form) and protractors are not allowed.
- Rulers and compasses are allowed.
- Answer all the questions.
- All questions carry equal marks. Maximum marks: 102.
- Answer to each question should start on a new page. Clearly indicate the question number.

1. Let $A B C$ be a right-angled triangle with $\angle B=90^{\circ}$. Let I be the incentre of $A B C$. Let $A I$ extended intersect $B C$ at F. Draw a line perpendicular to $A I$ at I. Let it intersect $A C$ at E. Prove that $I E=I F$.
2. Let a, b, c be positive real numbers such that

$$
\frac{a}{1+b}+\frac{b}{1+c}+\frac{c}{1+a}=1
$$

Prove that $a b c \leq 1 / 8$.
3. For any natural number n, expressed in base 10 , let $S(n)$ denote the sum of all digits of n. Find all natural numbers n such that $n^{3}=8 S(n)^{3}+6 n S(n)+1$.
4. How many 6 -digit natural numbers containing only the digits $1,2,3$ are there in which 3 occurs exactly twice and the number is divisible by 9 ?
5. Let $A B C$ be a right-angled triangle with $\angle B=90^{\circ}$. Let $A D$ be the bisector of $\angle A$ with D on $B C$. Let the circumcircle of triangle $A C D$ intersect $A B$ again in E; and let the circumcircle of triangle $A B D$ intersect $A C$ again in F. Let K be the reflection of E in the line $B C$. Prove that $F K=B C$.
6. Show that the infinite arithmetic progression $\langle 1,4,7,10, \ldots\rangle$ has infinitely many 3 -term subsequences in harmonic progression such that for any two such triples $\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\left\langle b_{1}, b_{2}, b_{3}\right\rangle$ in harmonic progression, one has

$$
\frac{a_{1}}{b_{1}} \neq \frac{a_{2}}{b_{2}}
$$

