Regional Mathematical Olympiad-2016

Time: 3 hours

October 16, 2016

Instructions:

- Calculators (in any form) and protractors are not allowed.
- Rulers and compasses are allowed.
- Answer all the questions.
- All questions carry equal marks. Maximum marks: 102.
- Answer to each question should start on a new page. Clearly indicate the question number.

1. Let $A B C$ be a triangle and D be the mid-point of $B C$. Suppose the angle bisector of $\angle A D C$ is tangent to the circumcircle of triangle $A B D$ at D. Prove that $\angle A=90^{\circ}$.
2. Let a, b, c be three distinct positive real numbers such that $a b c=1$. Prove that

$$
\frac{a^{3}}{(a-b)(a-c)}+\frac{b^{3}}{(b-c)(b-a)}+\frac{c^{3}}{(c-a)(c-b)} \geq 3
$$

3. Let a, b, c, d, e, f be positive integers such that

$$
\frac{a}{b}<\frac{c}{d}<\frac{e}{f}
$$

Suppose $a f-b e=-1$. Show that $d \geq b+f$.
4. There are 100 countries participating in an olympiad. Suppose n is a positive integer such that each of the 100 countries is willing to communicate in exactly n languages. If each set of 20 countries can communicate in at least one common language, and no language is common to all 100 countries, what is the minimum possible value of n ?
5. Let $A B C$ be a right-angled triangle with $\angle B=90^{\circ}$. Let I be the incentre of $A B C$. Extend $A I$ and $C I$; let them intersect $B C$ in D and $A B$ in E respectively. Draw a line perpendicular to $A I$ at I to meet $A C$ in J; draw a line perpendicular to $C I$ at I to meet $A C$ in K. Suppose $D J=E K$. Prove that $B A=B C$.
6. (a) Given any natural number N, prove that there exists a strictly increasing sequence of N positive integers in harmonic progression.
(b) Prove that there cannot exist a strictly increasing infinite sequence of positive integers which is in harmonic progression.

