(Syllabus) AIEEE 2011 Syllabus: PHYSICS
Disclaimer: This website is NOT associated with CBSE, for official website of CBSE visit - www.cbse.gov.in
All India Engineering Entrance Examination (AIEEE) 2011
(AIEEE 2011 Syllabus)
CHEMISTRY
SECTION-A (PHYSICAL CHEMISTRY)
UNIT 1:
Some Basic conceptS IN CHEMISTRY Matter and its nature, Dalton’s atomic theory; Concept of atom, molecule, element and compound; Physical quantities and their measurements in Chemistry, precision and accuracy, significant figures, S.I. Units, dimensional analysis; Laws of chemical combination; Atomic and molecular masses, mole concept, molar mass, percentage composition, empirical and molecular formulae; Chemical equations and stoichiometry.
UNIT 2:
States of Matter
Classification of matter into solid, liquid and gaseous states.
Gaseous State: Measurable properties of gases; Gas laws – Boyle’s law, Charle’s law, Graham’s law of diffusion, Avogadro’s law, Dalton’s law of partial pressure; Concept of Absolute scale of temperature; Ideal gas equation, Kinetic theory of gases (only postulates); Concept of average, root mean square and most probable velocities; Real gases, deviation from Ideal behaviour, compressibility factor, van der Waals equation, liquefaction of gases, critical constants.
Liquid State: Properties of liquids – vapour pressure, viscosity and surface tension and effect of temperature on them (qualitative treatment only).
Solid State: Classification of solids: molecular, ionic, covalent and metallic solids, amorphous and crystalline solids (elementary idea); Bragg’s Law and its applications; Unit cell and lattices, packing in solids (fcc, bcc and hcp lattices), voids, calculations involving unit cell parameters, imperfection in solids; Electrical, magnetic and dielectric properties. UNIT 3:
Atomic Structure Discovery of sub-atomic particles (electron, proton and neutron); Thomson and Rutherford atomic models and their limitations; Nature of electromagnetic radiation, photoelectric effect; Spectrum of hydrogen atom, Bohr model of hydrogen atom – its postulates, derivation of the relations for energy of the electron and radii of the different orbits, limitations of Bohr’s model; Dual nature of matter, de-Broglie’s relationship, Heisenberg uncertainty principle. Elementary ideas of quantum mechanics, quantum mechanical model of atom, its important features, * and *2, concept of atomic orbitals as one electron wave functions; Variation of * and * 2 with r for 1s and 2s orbitals; various quantum numbers (principal, angular momentum and magnetic quantum numbers) and their significance; shapes of s, p and d – orbitals, electron spin and spin quantum number; Rules for filling electrons in orbitals – aufbau principle, Pauli’s exclusion principle and Hund’s rule, electronic configuration of elements, extra stability of half-filled and completely filled orbitals.
UNIT 4:
Chemical Bonding and Molecular Structure Kossel – Lewis
approach to chemical bond formation, concept of ionic and covalent bonds.
Ionic Bonding: Formation of ionic bonds, factors affecting the formation of
ionic bonds; calculation of lattice enthalpy.
Covalent Bonding: Concept of electronegativity, Fajan’s rule,
dipole moment; Valence Shell Electron Pair Repulsion (VSEPR) theory and shapes
of simple molecules.
Quantum mechanical approach to covalent bonding: Valence bond
theory – Its important features, concept of hybridization involving s, p and d
orbitals; Resonance.
Molecular Orbital Theory – Its important features, LCAOs, types
of molecular orbitals (bonding, antibonding), sigma and pi-bonds, molecular
orbital electronic configurations of homonuclear diatomic molecules, concept of
bond order, bond length and bond energy.
Elementary idea of metallic bonding. Hydrogen bonding and its applications.
UNIT 5:
CHEMICAL THERMODYNAMICS Fundamentals of thermodynamics:
System and surroundings, extensive and intensive properties, state functions,
types of processes.
First law of thermodynamics – Concept of work, heat internal
energy and enthalpy, heat capacity, molar heat capacity; Hess’s law of constant
heat summation; Enthalpies of bond dissociation, combustion, formation,
atomization, sublimation, phase transition, hydration, ionization and solution.
Second law of thermodynamics- Spontaneity of processes; DS of
the universe and DG of the system as criteria for spontaneity, DGo (Standard
Gibbs energy change) and equilibrium constant.
UNIT 6:
SOLUTIONS Different methods for expressing concentration of solution – molality, molarity, mole fraction, percentage (by volume and mass both), vapour pressure of solutions and Raoult’s Law – Ideal and non-ideal solutions, vapour pressure – composition, plots for ideal and non-ideal solutions; Colligative properties of dilute solutions – relative lowering of vapour pressure, depression of freezing point, elevation of boiling point and osmotic pressure; Determination of molecular mass using colligative properties; Abnormal value of molar mass, van’t Hoff factor and its significance.
UNIT 7:
EQUILIBRIUM Meaning of equilibrium, concept of dynamic
equilibrium.
Equilibria involving physical processes: Solid -liquid, liquid – gas and solid –
gas equilibria, Henry’s law, general characterics of equilibrium involving
physical processes.
Equilibria involving chemical processes: Law of chemical equilibrium,
equilibrium constants (Kp and Kc) and their significance, significance of DG and
DGo in chemical equilibria, factors affecting equilibrium concentration,
pressure, temperature, effect of catalyst; Le Chatelier’s principle.
Ionic equilibrium: Weak and strong electrolytes, ionization of electrolytes,
various concepts of acids and bases (Arrhenius, Br?nsted – Lowry and Lewis) and
their ionization, acid – base equilibria (including multistage ionization) and
ionization constants, ionization of water, pH scale, common ion effect,
hydrolysis of salts and pH of their solutions, solubility of sparingly soluble
salts and solubility products, buffer solutions.
UNIT 8:
REDOX REACTIONS AND ELECTROCHEMISTRY Electronic concepts of
oxidation and reduction, redox reactions, oxidation number, rules for assigning
oxidation number, balancing of redox reactions.
Eectrolytic and metallic conduction, conductance in electrolytic solutions,
specific and molar conductivities and their variation with concentration:
Kohlrausch’s law and its applications.
Electrochemical cells – Electrolytic and Galvanic cells, different types of
electrodes, electrode potentials including standard electrode potential, half –
cell and cell reactions, emf of a Galvanic cell and its measurement; Nernst
equation and its applications; Relationship between cell potential and Gibbs’
energy change; Dry cell and lead accumulator; Fuel cells; Corrosion and its
prevention.
UNIT 9:
CHEMICAL KINETICS Rate of a chemical reaction, factors affecting the rate of reactions: concentration, temperature, pressure and catalyst; elementary and complex reactions, order and molecularity of reactions, rate law, rate constant and its units, differential and integral forms of zero and first order reactions, their characteristics and half – lives, effect of temperature on rate of reactions – Arrhenius theory, activation energy and its calculation, collision theory of bimolecular gaseous reactions (no derivation).
UNIT 10:
SURFACE CHEMISTRY Adsorption- Physisorption
and chemisorption and their characteristics, factors affecting adsorption of
gases on solids – Freundlich and Langmuir adsorption isotherms, adsorption from
solutions.
Catalysis – Homogeneous and heterogeneous, activity and
selectivity of solid catalysts, enzyme catalysis and its mechanism.
Colloidal state – distinction among true solutions, colloids
and suspensions, classification of colloids – lyophilic, lyophobic; multi
molecular, macromolecular and associated colloids (micelles), preparation and
properties of colloids – Tyndall effect, Brownian movement, electrophoresis,
dialysis, coagulation and flocculation; Emulsions and their characteristics.
SECTION-B : (INORGANIC CHEMISTRY)
UNIT 11:
CLASSIFICATON OF ELEMENTS AND PERIODICITY IN PROPERTIES Modem periodic law and present form of the periodic table, s, p, d and f block elements, periodic trends in properties of elementsatomic and ionic radii, ionization enthalpy, electron gain enthalpy, valence, oxidation states and chemical reactivity.
UNIT 12:
GENERAL PRINCIPLES AND PROCESSES OF ISOLATION OF METALS Modes of occurrence of elements in nature, minerals, ores; steps involved in the extraction of metals – concentration, reduction (chemical. and electrolytic methods) and refining with special reference to the extraction of Al, Cu, Zn and Fe; Thermodynamic and electrochemical principles involved in the extraction of metals.
UNIT 13:
HYDROGEN Position of hydrogen in periodic table, isotopes, preparation, properties and uses of hydrogen; Physical and chemical properties of water and heavy water; Structure, preparation, reactions and uses of hydrogen peroxide; Classification of hydrides – ionic, covalent and interstitial; Hydrogen as a fuel.
UNIT 14:
S – BLOCK ELEMENTS (ALKALI AND ALKALINE EARTH METALS)
Group – 1 and 2 Elements
General introduction, electronic configuration and general trends in
physical and chemical properties of elements, anomalous properties of the first
element of each group, diagonal relationships.
Preparation and properties of some important compounds – sodium carbonate,
sodium chloride, sodium hydroxide and sodium hydrogen carbonate; Industrial uses
of lime, limestone, Plaster of Paris and cement; Biological significance of Na,
K, Mg and Ca.
UNIT 15:
P – BLOCK ELEMENTS
Group – 13 to Group 18 Elements
General Introduction: Electronic configuration and general trends in physical and chemical properties of elements across the periods and down the groups; unique behaviour of the first element in each group.
Groupwise study of the p – block elements Group – 13
Preparation, properties and uses of boron and aluminium; Structure, properties and uses of borax, boric acid, diborane, boron trifluoride, aluminium chloride and alums.
Group – 14
Tendency for catenation; Structure, properties and uses of allotropes and oxides of carbon, silicon tetrachloride, silicates, zeolites and silicones.
Group – 15
Properties and uses of nitrogen and phosphorus; Allotrophic forms of phosphorus; Preparation, properties, structure and uses of ammonia, nitric acid, phosphine and phosphorus halides, (PCl3, PCl5); Structures of oxides and oxoacids of nitrogen and phosphorus.
Group – 16
Preparation, properties, structures and uses of dioxygen and ozone; Allotropic forms of sulphur; Preparation, properties, structures and uses of sulphur dioxide, sulphuric acid (including its industrial preparation); Structures of oxoacids of sulphur.
Group – 17
Preparation, properties and uses of chlorine and hydrochloric acid; Trends in the acidic nature of hydrogen halides; Structures of Interhalogen compounds and oxides and oxoacids of halogens.
Group -18
Occurrence and uses of noble gases; Structures of fluorides and oxides of xenon.
UNIT 16:
d – and f – BLOCK ELEMENTS
Transition Elements
General introduction, electronic configuration, occurrence and characteristics,
general trends in properties of the first row transition elements – physical
properties, ionization enthalpy, oxidation states, atomic radii, colour,
catalytic behaviour, magnetic properties, complex formation, interstitial
compounds, alloy formation; Preparation, properties and uses of K2Cr2O7
and KMnO4.
Inner Transition Elements
Lanthanoids - Electronic configuration, oxidation states,
chemical reactivity and lanthanoid contraction.
Actinoids – Electronic configuration and oxidation states.
UNIT 17:
CO-ORDINATION COMPOUNDS Introduction to co-ordination compounds, Werner’s theory; ligands, co-ordination number, denticity, chelation; IUPAC nomenclature of mononuclear co-ordination compounds, isomerism; Bonding-Valence bond approach and basic ideas of Crystal field theory, colour and magnetic properties; Importance of co-ordination compounds (in qualitative analysis, extraction of metals and in biological systems).
UNIT 18:
ENVIRONMENTAL CHEMISTRY Environmental pollution –
Atmospheric, water and soil.
Atmospheric pollution – Tropospheric and stratospheric
Tropospheric pollutants – Gaseous pollutants: Oxides of carbon,
nitrogen and sulphur, hydrocarbons; their sources, harmful effects and
prevention; Green house effect and Global warming; Acid rain;
Particulate pollutants: Smoke, dust, smog, fumes, mist; their
sources, harmful effects and prevention.
Stratospheric pollution- Formation and breakdown of ozone,
depletion of ozone layer – its mechanism and effects.
Water Pollution - Major pollutants such as, pathogens, organic
wastes and chemical pollutants; their harmful effects and prevention.
Soil pollution – Major pollutants such as: Pesticides
(insecticides,. herbicides and fungicides), their harmful effects and
prevention.
Strategies to control environmental pollution.
Section-C : (Organic Chemistry)
UNIT 19:
Purification and Characterisation of Organic Compounds
Purification – Crystallization, sublimation, distillation, differential
extraction and chromatography – principles and their applications.
Qualitative analysis – Detection of nitrogen, sulphur, phosphorus and halogens.
Quantitative analysis (basic principles only) – Estimation of carbon, hydrogen,
nitrogen, halogens, sulphur, phosphorus.
Calculations of empirical formulae and molecular formulae; Numerical problems in
organic quantitative analysis. UNIT 20:
SOME BASIC PRINCIPLES OF ORGANIC CHEMISTRY Tetravalency of
carbon; Shapes of simple molecules – hybridization (s and p); Classification of
organic compounds based on functional groups: – C = C – , – C ? C – and those
containing halogens, oxygen, nitrogen and sulphur; Homologous series; Isomerism
– structural and stereoisomerism.
Nomenclature (Trivial and IUPAC)
Covalent bond fission – Homolytic and heterolytic: free
radicals, carbocations and carbanions; stability of carbocations and free
radicals, electrophiles and nucleophiles.
Electronic displacement in a covalent bond – Inductive effect, electromeric
effect, resonance and hyperconjugation.
Common types of organic reactions – Substitution, addition,
elimination and rearrangement.
UNIT 21:
Hydrocarbons Classification, isomerism, IUPAC nomenclature,
general methods of preparation, properties and reactions.
Alkanes – Conformations: Sawhorse and Newman projections (of
ethane); Mechanism of halogenation of alkanes.
Alkenes – Geometrical isomerism; Mechanism of electrophilic
addition: addition of hydrogen, halogens, water, hydrogen halides (Markownikoff’s
and peroxide effect); Ozonolysis, oxidation, and polymerization.
Alkynes – Acidic character; Addition of hydrogen, halogens,
water and hydrogen halides; Polymerization.
Aromatic hydrocarbons – Nomenclature, benzene – structure and
aromaticity; Mechanism of electrophilic substitution: halogenation, nitration,
Friedel – Craft’s alkylation and acylation, directive influence of functional
group in mono-substituted benzene.
UNIT 22:
Organic Compounds Containing Halogens General methods of
preparation, properties and reactions; Nature of C-X bond; Mechanisms of
substitution reactions.
Uses; Environmental effects of chloroform, iodoform, freons and DDT.
UNIT 23:
Organic compounds containing Oxygen General methods of
preparation, properties, reactions and uses.
ALCOHOLS, PHENOLS AND ETHERS
Alcohols: Identification of primary, secondary and tertiary
alcohols; mechanism of dehydration.
Phenols: Acidic nature, electrophilic substitution reactions:
halogenation, nitration and sulphonation, Reimer – Tiemann reaction.
Ethers: Structure.
Aldehyde and Ketones: Nature of carbonyl group;
Nucleophilic addition to >C=O group, relative reactivities of aldehydes and
ketones; Important reactions such as – Nucleophilic addition reactions (addition
of HCN, NH3 and its derivatives), Grignard reagent; oxidation; reduction (Wolff
Kishner and Clemmensen); acidity of ? – hydrogen, aldol condensation, Cannizzaro
reaction, Haloform reaction; Chemical tests to distinguish between aldehydes and
Ketones.
CARBOXYLIC ACIDS
Acidic strength and factors affecting it.
UNIT 24:
Organic Compounds Containing Nitrogen General methods of
preparation, properties, reactions and uses.
Amines: Nomenclature, classification, structure, basic
character and identification of primary, secondary and tertiary amines and their
basic character.
Diazonium Salts: Importance in synthetic organic chemistry.
UNIT 25:
Polymers General introduction and classification of polymers, general methods of polymerization – addition and condensation, copolymerization; Natural and synthetic rubber and vulcanization; some important polymers with emphasis on their monomers and uses – polythene, nylon, polyester and bakelite.
UNIT 26:
Bio Molecules General introduction and importance of
biomolecules.
CARBOHYDRATES – Classification: aldoses and ketoses;
monosaccharides (glucose and fructose), constituent monosaccharides of
oligosacchorides (sucrose, lactose, maltose) and polysaccharides (starch,
cellulose, glycogen).
PROTEINS – Elementary Idea of ? – amino acids, peptide bond,
polypeptides; Proteins: primary, secondary, tertiary and quaternary structure
(qualitative idea only), denaturation of proteins, enzymes.
VITAMINS – Classification and functions.
NUCLEIC ACIDS – Chemical constitution of DNA and RNA.
Biological functions of nucleic acids.
UNIT 27:
Chemistry in everyday life Chemicals in medicines –
Analgesics, tranquilizers, antiseptics, disinfectants, antimicrobials,
antifertility drugs, antibiotics, antacids, antihistamins – their meaning and
common examples.
Chemicals in food – Preservatives, artificial sweetening agents
– common examples.
Cleansing agents – Soaps and detergents, cleansing action.
UNIT 28:
principles related to practical Chemistry • Detection of
extra elements (N,S, halogens) in organic compounds; Detection of the following
functional groups: hydroxyl (alcoholic and phenolic), carbonyl (aldehyde and
ketone), carboxyl and amino groups in organic compounds.
• Chemistry involved in the preparation of the following:
Inorganic compounds: Mohr’s salt, potash alum.
Organic compounds: Acetanilide, p-nitroacetanilide, aniline yellow, iodoform.
• Chemistry involved in the titrimetric excercises – Acids bases and the use of
indicators, oxalic-acid vs KMnO4, Mohr’s salt vs KMnO4.
• Chemical principles involved in the qualitative salt analysis:
Cations – Pb2+ , Cu2+, AI3+, Fe3+,
Zn2+, Ni2+, Ca2+, Ba2+, Mg2+,
NH4+.
Anions- CO32-, S2-, SO42-,
NO2-, NO3-, CI-, Br, I. (Insoluble salts
excluded).
• Chemical principles involved in the following experiments:
1. Enthalpy of solution of CuSO4
2. Enthalpy of neutralization of strong acid and strong base. .
3. Preparation of lyophilic and lyophobic sols.
4. Kinetic study of reaction of iodide ion with hydrogen peroxide at room
temperature.