
CBSE: All India Engineering
Entrance Examinations (AIEEE)
Syllabus: Physics - 2012
The syllabus contains two Sections - A and B. Section - A pertains to the Theory
Part having 80% weightage, while Section - B contains Practical Component
(Experimental Skills) having 20% weightage.
SECTION – A
Unit 1: Physics and Measurement:
Physics, technology and society, S I units, Fundamental and
derived units. Least count, accuracy and precision of measuring instruments,
Errors in measurement, Dimensions of Physical quantities, dimensional analysis
and its applications.
Unit 2: Kinematics:
Frame of reference. Motion in a straight line: Position-time
graph, speed and velocity. Uniform and non-uniform motion, average speed and
instantaneous velocity Uniformly accelerated motion, velocity-time,
position-time graphs, relations for uniformly accelerated motion. Scalars and
Vectors, Vector addition and Subtraction, Zero Vector, Scalar and Vector
products, Unit Vector, Resolution of a Vector. Relative Velocity, Motion in a
plane, Projectile Motion, Uniform Circular Motion.
Unit 3: Laws of Motion:
Force and Inertia, Newton’s First Law of motion; Momentum,
Newton’s Second Law of motion; Impulse; Newton’s Third Law of motion. Law of
conservation of linear momentum and its applications, Equilibrium of concurrent
forces. Static and Kinetic friction, laws of friction, rolling friction.
Dynamics of uniform circular motion: Centripetal force and its applications.
Unit 4: Work, Energy and Power:
Work done by a constant force and a variable force; kinetic
and potential energies, workenergy theorem, power. Potential energy of a spring,
conservation of mechanical energy, conservative and nonconservative forces;
Elastic and inelastic collisions in one and two dimensions.
Unit 5: Rotational Motion:
Centre of mass of a two-particle system, Centre of mass of a
rigid body; Basic concepts of rotational motion; moment of a force, torque,
angular momentum, conservation of angular momentum and its applications; moment
of inertia, radius of gyration. Values of moments of inertia for simple
geometrical objects, parallel and perpendicular axes theorems and their
applications. Rigid body rotation, equations of rotational motion.
Unit 6: Gravitation:
The universal law of gravitation. Acceleration due to gravity
and its variation with altitude and depth. Kepler’s laws of planetary motion.
Gravitational potential energy; gravitational potential. Escape velocity.
Orbital velocity of a satellite. Geo-stationary satellites.
Unit 7: Properties of Solids and Liquids:
Elastic behaviour, Stress-strain relationship, Hooke’s Law,
Young’s modulus, bulk modulus, modulus of rigidity. Pressure due to a fluid
column; Pascal’s law and its applications. Viscosity, Stokes’ law, terminal
velocity, streamline and turbulent flow, Reynolds number. Bernoulli’s principle
and its applications. Surface energy and surface tension, angle of contact,
application of surface tension - drops, bubbles and capillary rise. Heat,
temperature, thermal expansion; specific heat capacity, calorimetry; change of
state, latent heat. Heat transfer conduction, convection and radiation, Newton’s
law of cooling.
Unit 8: Thermodynamics:
Thermal equilibrium, zeroth law of thermodynamics, concept of
temperature. Heat, work and internal energy. First law of thermodynamics. Second
law of thermodynamics: reversible and irreversible processes. Carnot engine and
its efficiency.
Unit 9: Kinetic Theory of Gases:
Equation of state of a perfect gas, work doneon compressing a
gas.Kinetic theory of gases - assumptions, concept of pressure. Kinetic energy
and temperature: rms speed of gas molecules; Degrees of freedom, Law of
equipartition of energy,applications to specific heat capacities of gases; Mean
free path, Avogadro’s number.
Unit 10: Oscillations and Waves:
Periodic motion - period, frequency, displacement as a
function of time. Periodic functions. Simple harmonic motion (S.H.M.) and its
equation; phase; oscillations of a spring -restoring force and force constant;
energy in S.H.M. - kinetic and potential energies; Simple pendulum - derivation
of expression for its time period; Free, forced and damped oscillations,
resonance. Wave motion. Longitudinal and transverse waves, speed of a wave.
Displacement relation for a progressive wave. Principle of superposition of
waves, reflection of waves, Standing waves in strings and organ pipes,
fundamental mode and harmonics, Beats, Doppler effect in sound